{"title":"基于生态模型的白洋淀多环芳烃群落生态响应。","authors":"Yong Zeng, Jiaxin Li, Yanwei Zhao, Wei Yang","doi":"10.1007/s10646-023-02722-y","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic response of a single population to chemicals can be represented by a Weibull function. However, it is unclear whether the overall response can still be represented in this manner when scaled up to the community level. In this study, we investigated the responses of biological communities to polycyclic aromatic hydrocarbons by using an ecological model of Baiyangdian Lake in northern China. The community dynamics process was divided into the following three stages. In the first stage, toxicity, played a dominant role and strong, medium, and weak species responses were observed according to the toxicity sensitivity. In the second stage, the dynamic process was dominated by the interaction strength with three alternative dynamic pathways comprising of direct response, no response, or inverse response. In the third stage, the toxicity was again dominant, and the biomasses of all species decreased to extinction. The toxicological dynamics were far more complex at the community level than those at the single species level and they were also influenced by the interaction strength as well as toxicity. The toxicological dynamic process in the community was constantly driven by the competing effects of these two forces. In addition to the total biomass, the interaction strength was identified as a suitable community-level signal because it exhibited good indicator properties regarding ecosystem steady-state transitions. However, we found that food web stability indicators were not suitable for use as community-level signals because they were not sensitive to changes in the ecosystem state. Some ecological management suggestions have been proposed, including medium to long-term monitoring, and reduction of external pollution loads and bioindicators. The results obtained in this study increase our understanding of how chemicals interfere with community dynamics, and the interaction strength and total biomass were identified as useful holistic indicators.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"34-46"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830818/pdf/","citationCount":"0","resultStr":"{\"title\":\"Community ecological response to polycyclic aromatic hydrocarbons in Baiyangdian Lake based on an ecological model.\",\"authors\":\"Yong Zeng, Jiaxin Li, Yanwei Zhao, Wei Yang\",\"doi\":\"10.1007/s10646-023-02722-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamic response of a single population to chemicals can be represented by a Weibull function. However, it is unclear whether the overall response can still be represented in this manner when scaled up to the community level. In this study, we investigated the responses of biological communities to polycyclic aromatic hydrocarbons by using an ecological model of Baiyangdian Lake in northern China. The community dynamics process was divided into the following three stages. In the first stage, toxicity, played a dominant role and strong, medium, and weak species responses were observed according to the toxicity sensitivity. In the second stage, the dynamic process was dominated by the interaction strength with three alternative dynamic pathways comprising of direct response, no response, or inverse response. In the third stage, the toxicity was again dominant, and the biomasses of all species decreased to extinction. The toxicological dynamics were far more complex at the community level than those at the single species level and they were also influenced by the interaction strength as well as toxicity. The toxicological dynamic process in the community was constantly driven by the competing effects of these two forces. In addition to the total biomass, the interaction strength was identified as a suitable community-level signal because it exhibited good indicator properties regarding ecosystem steady-state transitions. However, we found that food web stability indicators were not suitable for use as community-level signals because they were not sensitive to changes in the ecosystem state. Some ecological management suggestions have been proposed, including medium to long-term monitoring, and reduction of external pollution loads and bioindicators. The results obtained in this study increase our understanding of how chemicals interfere with community dynamics, and the interaction strength and total biomass were identified as useful holistic indicators.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"34-46\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830818/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-023-02722-y\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-023-02722-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Community ecological response to polycyclic aromatic hydrocarbons in Baiyangdian Lake based on an ecological model.
The dynamic response of a single population to chemicals can be represented by a Weibull function. However, it is unclear whether the overall response can still be represented in this manner when scaled up to the community level. In this study, we investigated the responses of biological communities to polycyclic aromatic hydrocarbons by using an ecological model of Baiyangdian Lake in northern China. The community dynamics process was divided into the following three stages. In the first stage, toxicity, played a dominant role and strong, medium, and weak species responses were observed according to the toxicity sensitivity. In the second stage, the dynamic process was dominated by the interaction strength with three alternative dynamic pathways comprising of direct response, no response, or inverse response. In the third stage, the toxicity was again dominant, and the biomasses of all species decreased to extinction. The toxicological dynamics were far more complex at the community level than those at the single species level and they were also influenced by the interaction strength as well as toxicity. The toxicological dynamic process in the community was constantly driven by the competing effects of these two forces. In addition to the total biomass, the interaction strength was identified as a suitable community-level signal because it exhibited good indicator properties regarding ecosystem steady-state transitions. However, we found that food web stability indicators were not suitable for use as community-level signals because they were not sensitive to changes in the ecosystem state. Some ecological management suggestions have been proposed, including medium to long-term monitoring, and reduction of external pollution loads and bioindicators. The results obtained in this study increase our understanding of how chemicals interfere with community dynamics, and the interaction strength and total biomass were identified as useful holistic indicators.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.