社论:植物与微生物共生,实现可持续粮食安全。

Plant signaling & behavior Pub Date : 2024-12-31 Epub Date: 2024-01-05 DOI:10.1080/15592324.2023.2298054
Ixchel Campos-Avelar, Amelia C Montoya-Martínez, Fannie I Parra-Cota, Sergio de Los Santos-Villalobos
{"title":"社论:植物与微生物共生,实现可持续粮食安全。","authors":"Ixchel Campos-Avelar, Amelia C Montoya-Martínez, Fannie I Parra-Cota, Sergio de Los Santos-Villalobos","doi":"10.1080/15592324.2023.2298054","DOIUrl":null,"url":null,"abstract":"<p><p>The use of plant-associated microorganisms is increasingly being investigated as a key tool for mitigating the impact of biotic and abiotic threats to crops and facilitating migration to sustainable agricultural practices. The microbiome is responsible for several functions in agroecosystems, such as the transformation of organic matter, nutrient cycling, and plant/pathogen growth regulation. As climate change and global warming are altering the dynamics of plant-microbial interactions in the ecosystem, it has become essential to perform comprehensive studies to decipher current and future microbial interactions, as their useful symbiotic mechanisms could be better exploited to achieve sustainable agriculture. This will allow for the development of effective microbial inoculants that facilitate nutrient supply for the plant at its minimal energy expense, thus increasing its resilience to biotic and abiotic stresses. This article collection aims to compile state-of-the-art research focused on the elucidation and optimization of symbiotic relationships between crops and their associated microbes. The information presented here will contribute to the development of next-generation microbial inoculants for achieving a more sustainable agriculture.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2298054"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773630/pdf/","citationCount":"0","resultStr":"{\"title\":\"Editorial: plant-microbial symbiosis toward sustainable food security.\",\"authors\":\"Ixchel Campos-Avelar, Amelia C Montoya-Martínez, Fannie I Parra-Cota, Sergio de Los Santos-Villalobos\",\"doi\":\"10.1080/15592324.2023.2298054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of plant-associated microorganisms is increasingly being investigated as a key tool for mitigating the impact of biotic and abiotic threats to crops and facilitating migration to sustainable agricultural practices. The microbiome is responsible for several functions in agroecosystems, such as the transformation of organic matter, nutrient cycling, and plant/pathogen growth regulation. As climate change and global warming are altering the dynamics of plant-microbial interactions in the ecosystem, it has become essential to perform comprehensive studies to decipher current and future microbial interactions, as their useful symbiotic mechanisms could be better exploited to achieve sustainable agriculture. This will allow for the development of effective microbial inoculants that facilitate nutrient supply for the plant at its minimal energy expense, thus increasing its resilience to biotic and abiotic stresses. This article collection aims to compile state-of-the-art research focused on the elucidation and optimization of symbiotic relationships between crops and their associated microbes. The information presented here will contribute to the development of next-generation microbial inoculants for achieving a more sustainable agriculture.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":\"19 1\",\"pages\":\"2298054\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2023.2298054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2023.2298054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们正越来越多地研究如何利用与植物相关的微生物,将其作为减轻生物和非生物威胁对作物的影响以及促进向可持续农业实践转变的重要工具。微生物群在农业生态系统中发挥着多种功能,如有机物转化、养分循环和植物/病原体生长调节。由于气候变化和全球变暖正在改变生态系统中植物与微生物相互作用的动态,因此有必要开展全面研究,破解当前和未来的微生物相互作用,因为可以更好地利用其有用的共生机制来实现可持续农业。这将有助于开发有效的微生物接种剂,以最小的能量消耗促进植物的营养供应,从而提高植物对生物和非生物压力的适应能力。本论文集旨在汇集有关阐明和优化作物与其相关微生物之间共生关系的最新研究成果。这里提供的信息将有助于开发下一代微生物接种剂,从而实现更可持续的农业发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Editorial: plant-microbial symbiosis toward sustainable food security.

The use of plant-associated microorganisms is increasingly being investigated as a key tool for mitigating the impact of biotic and abiotic threats to crops and facilitating migration to sustainable agricultural practices. The microbiome is responsible for several functions in agroecosystems, such as the transformation of organic matter, nutrient cycling, and plant/pathogen growth regulation. As climate change and global warming are altering the dynamics of plant-microbial interactions in the ecosystem, it has become essential to perform comprehensive studies to decipher current and future microbial interactions, as their useful symbiotic mechanisms could be better exploited to achieve sustainable agriculture. This will allow for the development of effective microbial inoculants that facilitate nutrient supply for the plant at its minimal energy expense, thus increasing its resilience to biotic and abiotic stresses. This article collection aims to compile state-of-the-art research focused on the elucidation and optimization of symbiotic relationships between crops and their associated microbes. The information presented here will contribute to the development of next-generation microbial inoculants for achieving a more sustainable agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana. Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background requires a functional stromal Ascorbate Peroxidase. Editorial: plant-microbial symbiosis toward sustainable food security. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1