地球系统模型系统性低估了树冠传导对干旱的敏感性

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY AGU Advances Pub Date : 2024-01-04 DOI:10.1029/2023AV001026
J. K. Green, Y. Zhang, X. Luo, T. F. Keenan
{"title":"地球系统模型系统性低估了树冠传导对干旱的敏感性","authors":"J. K. Green,&nbsp;Y. Zhang,&nbsp;X. Luo,&nbsp;T. F. Keenan","doi":"10.1029/2023AV001026","DOIUrl":null,"url":null,"abstract":"<p>The response of vegetation canopy conductance (<i>g</i><sub><i>c</i></sub>) to changes in moisture availability (<math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>γ</mi>\n <mrow>\n <mi>g</mi>\n <mi>c</mi>\n </mrow>\n <mi>m</mi>\n </msubsup>\n </mrow>\n <annotation> ${\\gamma }_{gc}^{m}$</annotation>\n </semantics></math>) is a major source of uncertainty in climate projections. While vegetation typically reduces stomatal conductance during drought, accurately modeling how and to what degree stomata respond to changes in moisture availability at global scales is particularly challenging, because no global scale <i>g</i><sub><i>c</i></sub> observations exist. Here, we leverage a collection of satellite, reanalysis and station-based near-surface air and surface temperature estimates, which are physically and statistically linked to <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>γ</mi>\n <mrow>\n <mi>g</mi>\n <mi>c</mi>\n </mrow>\n <mi>m</mi>\n </msubsup>\n </mrow>\n <annotation> ${\\gamma }_{gc}^{m}$</annotation>\n </semantics></math> due to the local cooling effect of <i>g</i><sub><i>c</i></sub> through transpiration, to develop a novel emergent constraint of <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>γ</mi>\n <mrow>\n <mi>g</mi>\n <mi>c</mi>\n </mrow>\n <mi>m</mi>\n </msubsup>\n </mrow>\n <annotation> ${\\gamma }_{gc}^{m}$</annotation>\n </semantics></math> in an ensemble of Earth System Models (ESMs). We find that ESMs systematically underestimate <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>γ</mi>\n <mrow>\n <mi>g</mi>\n <mi>c</mi>\n </mrow>\n <mi>m</mi>\n </msubsup>\n </mrow>\n <annotation> ${\\gamma }_{gc}^{m}$</annotation>\n </semantics></math> by ∼33%, particularly in grasslands, croplands, and savannas in semi-arid and bordering regions of the Central United States, Central Europe, Southeastern South America, Southern Africa, Eastern Australia, and parts of East Asia. We show that this underestimation occurs because ESMs inadequately reduce <i>g</i><sub><i>c</i></sub> when soil moisture decreases. As <i>g</i><sub><i>c</i></sub> controls carbon, water and energy fluxes, the misrepresentation of modeled <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>γ</mi>\n <mrow>\n <mi>g</mi>\n <mi>c</mi>\n </mrow>\n <mi>m</mi>\n </msubsup>\n </mrow>\n <annotation> ${\\gamma }_{gc}^{m}$</annotation>\n </semantics></math> contributes to biases in ESM projections of gross primary production, transpiration, and temperature during droughts. Our results suggest that the severity and duration of droughts may be misrepresented in ESMs due to the impact of sustained <i>g</i><sub><i>c</i></sub> on both soil moisture dynamics and the biosphere-atmosphere feedbacks that affect local temperatures and regional weather patterns.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV001026","citationCount":"0","resultStr":"{\"title\":\"Systematic Underestimation of Canopy Conductance Sensitivity to Drought by Earth System Models\",\"authors\":\"J. K. Green,&nbsp;Y. Zhang,&nbsp;X. Luo,&nbsp;T. F. Keenan\",\"doi\":\"10.1029/2023AV001026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The response of vegetation canopy conductance (<i>g</i><sub><i>c</i></sub>) to changes in moisture availability (<math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>γ</mi>\\n <mrow>\\n <mi>g</mi>\\n <mi>c</mi>\\n </mrow>\\n <mi>m</mi>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\gamma }_{gc}^{m}$</annotation>\\n </semantics></math>) is a major source of uncertainty in climate projections. While vegetation typically reduces stomatal conductance during drought, accurately modeling how and to what degree stomata respond to changes in moisture availability at global scales is particularly challenging, because no global scale <i>g</i><sub><i>c</i></sub> observations exist. Here, we leverage a collection of satellite, reanalysis and station-based near-surface air and surface temperature estimates, which are physically and statistically linked to <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>γ</mi>\\n <mrow>\\n <mi>g</mi>\\n <mi>c</mi>\\n </mrow>\\n <mi>m</mi>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\gamma }_{gc}^{m}$</annotation>\\n </semantics></math> due to the local cooling effect of <i>g</i><sub><i>c</i></sub> through transpiration, to develop a novel emergent constraint of <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>γ</mi>\\n <mrow>\\n <mi>g</mi>\\n <mi>c</mi>\\n </mrow>\\n <mi>m</mi>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\gamma }_{gc}^{m}$</annotation>\\n </semantics></math> in an ensemble of Earth System Models (ESMs). We find that ESMs systematically underestimate <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>γ</mi>\\n <mrow>\\n <mi>g</mi>\\n <mi>c</mi>\\n </mrow>\\n <mi>m</mi>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\gamma }_{gc}^{m}$</annotation>\\n </semantics></math> by ∼33%, particularly in grasslands, croplands, and savannas in semi-arid and bordering regions of the Central United States, Central Europe, Southeastern South America, Southern Africa, Eastern Australia, and parts of East Asia. We show that this underestimation occurs because ESMs inadequately reduce <i>g</i><sub><i>c</i></sub> when soil moisture decreases. As <i>g</i><sub><i>c</i></sub> controls carbon, water and energy fluxes, the misrepresentation of modeled <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>γ</mi>\\n <mrow>\\n <mi>g</mi>\\n <mi>c</mi>\\n </mrow>\\n <mi>m</mi>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\gamma }_{gc}^{m}$</annotation>\\n </semantics></math> contributes to biases in ESM projections of gross primary production, transpiration, and temperature during droughts. Our results suggest that the severity and duration of droughts may be misrepresented in ESMs due to the impact of sustained <i>g</i><sub><i>c</i></sub> on both soil moisture dynamics and the biosphere-atmosphere feedbacks that affect local temperatures and regional weather patterns.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV001026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023AV001026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV001026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

植被冠层传导率(gc)对水分供应量变化的响应(γ g c m ${/gamma }_{gc}^{m}$)是气候预测不确定性的一个主要来源。虽然植被在干旱时通常会降低气孔导度,但由于不存在全球尺度的 gc 观测数据,因此准确模拟气孔如何以及在多大程度上响应全球尺度的水分供应变化尤其具有挑战性。在这里,我们利用一系列卫星、再分析和基于站点的近地表空气和地表温度估算值(由于蒸腾作用产生的气溶胶局部冷却效应,这些估算值与γ g c m ${\gamma }_{gc}^{m}$存在物理和统计联系),在地球系统模式(ESM)集合中建立了一个新的γ g c m ${\gamma }_{gc}^{m}$新兴约束条件。我们发现,ESM系统性地低估了γ g c m ${\gamma }_{gc}^{m}$,低估幅度达33%,尤其是在美国中部、欧洲中部、南美洲东南部、非洲南部、澳大利亚东部和东亚部分地区的半干旱和接壤地区的草地、耕地和稀树草原。我们的研究表明,出现这种低估的原因是,当土壤湿度下降时,无害环境管理未能充分降低 gc。由于gc控制着碳、水和能量通量,模型γ g c m ${/gamma }_{gc}^{m}$的错误表示导致了干旱期间ESM对总初级生产量、蒸腾量和温度预测的偏差。我们的研究结果表明,由于持续的 gc 对土壤水分动态以及影响当地气温和区域天气模式的生物圈-大气反馈的影响,干旱的严重程度和持续时间可能在 ESM 中被错误地描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic Underestimation of Canopy Conductance Sensitivity to Drought by Earth System Models

The response of vegetation canopy conductance (gc) to changes in moisture availability ( γ g c m ${\gamma }_{gc}^{m}$ ) is a major source of uncertainty in climate projections. While vegetation typically reduces stomatal conductance during drought, accurately modeling how and to what degree stomata respond to changes in moisture availability at global scales is particularly challenging, because no global scale gc observations exist. Here, we leverage a collection of satellite, reanalysis and station-based near-surface air and surface temperature estimates, which are physically and statistically linked to γ g c m ${\gamma }_{gc}^{m}$ due to the local cooling effect of gc through transpiration, to develop a novel emergent constraint of γ g c m ${\gamma }_{gc}^{m}$ in an ensemble of Earth System Models (ESMs). We find that ESMs systematically underestimate γ g c m ${\gamma }_{gc}^{m}$ by ∼33%, particularly in grasslands, croplands, and savannas in semi-arid and bordering regions of the Central United States, Central Europe, Southeastern South America, Southern Africa, Eastern Australia, and parts of East Asia. We show that this underestimation occurs because ESMs inadequately reduce gc when soil moisture decreases. As gc controls carbon, water and energy fluxes, the misrepresentation of modeled γ g c m ${\gamma }_{gc}^{m}$ contributes to biases in ESM projections of gross primary production, transpiration, and temperature during droughts. Our results suggest that the severity and duration of droughts may be misrepresented in ESMs due to the impact of sustained gc on both soil moisture dynamics and the biosphere-atmosphere feedbacks that affect local temperatures and regional weather patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Distinct Energy Budgets of Mars and Earth Effects of Mesoscale Eddies on Southern Ocean Biogeochemistry The Petrology and Geochemistry of the 2021 Fagradalsfjall Eruption, Iceland: An Eruption Sourced From Multiple, Compositionally Diverse, Near-Moho Sills Imaging Magma Reservoirs From Space With Altimetry-Derived Gravity Data Magnetospheric Control of Ionospheric TEC Perturbations via Whistler-Mode and ULF Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1