David I. Groves, M. Santosh, Qingfei Wang, Liang Zhang, Hesen Zhao
{"title":"Boring Billion:解决造山型金矿床矿石流体源模型争议的关键?","authors":"David I. Groves, M. Santosh, Qingfei Wang, Liang Zhang, Hesen Zhao","doi":"10.1007/s00126-023-01244-1","DOIUrl":null,"url":null,"abstract":"<p>Orogenic gold systems are arguably the most variable mineral system globally in terms of an extreme range of depositional depths, corresponding P–T conditions and wallrock alteration assemblages, structural controls and styles, and element associations. This diversity has ignited controversy on genetic models for the two decades since orogenic gold became a widely accepted term. From the diverse genetic models proposed, the two groups of fluid-source models that meet most genetic constraints are the following: (1) deposition from crustal fluids via metamorphic devolatilization at the amphibolite-greenschist transition, or potentially even deeper under specific tectonic conditions, and (2) deposition from sub-crustal fluids either by direct devolatilization of subducted oceanic crust and overlying sediment wedge or of previously metasomatized and fertilized mantle lithosphere. Both models normally postulate gold deposition within a geodynamic system that evolves from extension through compression into syn-gold transpression. Crustal metamorphic models normally invoke subduction-driven geodynamic systems that involve advection of crustal metamorphic fluids up crustal-scale faults. In contrast, sub-crustal devolatilization models involve subduction-related processes as both geodynamic drivers and gold sources with fault-controlled fluid conduits extending to below the Moho. The overall lack of orogenic gold and other subduction-related mineral systems during the unique Boring Billion (1.8–0.8 Ga) period provides an important constraint on this genetic debate. Boring Billion orogens had varying geodynamic drivers, asthenosphere upwelling, and low-P metamorphic terranes with crustal-scale faults, all parameters consistent with formation of orogenic gold systems, during subduction-independent accordion-type tectonics. The absence of orogenic gold during the Boring Billion provides critical evidence against the crustal metamorphic model and furthers the sub-crustal model which requires subduction as both the geodynamic driver and auriferous fluid source.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"47 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Boring Billion: A key to resolving controversy on ore-fluid source models for orogenic gold deposits?\",\"authors\":\"David I. Groves, M. Santosh, Qingfei Wang, Liang Zhang, Hesen Zhao\",\"doi\":\"10.1007/s00126-023-01244-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Orogenic gold systems are arguably the most variable mineral system globally in terms of an extreme range of depositional depths, corresponding P–T conditions and wallrock alteration assemblages, structural controls and styles, and element associations. This diversity has ignited controversy on genetic models for the two decades since orogenic gold became a widely accepted term. From the diverse genetic models proposed, the two groups of fluid-source models that meet most genetic constraints are the following: (1) deposition from crustal fluids via metamorphic devolatilization at the amphibolite-greenschist transition, or potentially even deeper under specific tectonic conditions, and (2) deposition from sub-crustal fluids either by direct devolatilization of subducted oceanic crust and overlying sediment wedge or of previously metasomatized and fertilized mantle lithosphere. Both models normally postulate gold deposition within a geodynamic system that evolves from extension through compression into syn-gold transpression. Crustal metamorphic models normally invoke subduction-driven geodynamic systems that involve advection of crustal metamorphic fluids up crustal-scale faults. In contrast, sub-crustal devolatilization models involve subduction-related processes as both geodynamic drivers and gold sources with fault-controlled fluid conduits extending to below the Moho. The overall lack of orogenic gold and other subduction-related mineral systems during the unique Boring Billion (1.8–0.8 Ga) period provides an important constraint on this genetic debate. Boring Billion orogens had varying geodynamic drivers, asthenosphere upwelling, and low-P metamorphic terranes with crustal-scale faults, all parameters consistent with formation of orogenic gold systems, during subduction-independent accordion-type tectonics. The absence of orogenic gold during the Boring Billion provides critical evidence against the crustal metamorphic model and furthers the sub-crustal model which requires subduction as both the geodynamic driver and auriferous fluid source.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-023-01244-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-023-01244-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Boring Billion: A key to resolving controversy on ore-fluid source models for orogenic gold deposits?
Orogenic gold systems are arguably the most variable mineral system globally in terms of an extreme range of depositional depths, corresponding P–T conditions and wallrock alteration assemblages, structural controls and styles, and element associations. This diversity has ignited controversy on genetic models for the two decades since orogenic gold became a widely accepted term. From the diverse genetic models proposed, the two groups of fluid-source models that meet most genetic constraints are the following: (1) deposition from crustal fluids via metamorphic devolatilization at the amphibolite-greenschist transition, or potentially even deeper under specific tectonic conditions, and (2) deposition from sub-crustal fluids either by direct devolatilization of subducted oceanic crust and overlying sediment wedge or of previously metasomatized and fertilized mantle lithosphere. Both models normally postulate gold deposition within a geodynamic system that evolves from extension through compression into syn-gold transpression. Crustal metamorphic models normally invoke subduction-driven geodynamic systems that involve advection of crustal metamorphic fluids up crustal-scale faults. In contrast, sub-crustal devolatilization models involve subduction-related processes as both geodynamic drivers and gold sources with fault-controlled fluid conduits extending to below the Moho. The overall lack of orogenic gold and other subduction-related mineral systems during the unique Boring Billion (1.8–0.8 Ga) period provides an important constraint on this genetic debate. Boring Billion orogens had varying geodynamic drivers, asthenosphere upwelling, and low-P metamorphic terranes with crustal-scale faults, all parameters consistent with formation of orogenic gold systems, during subduction-independent accordion-type tectonics. The absence of orogenic gold during the Boring Billion provides critical evidence against the crustal metamorphic model and furthers the sub-crustal model which requires subduction as both the geodynamic driver and auriferous fluid source.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.