{"title":"尺度效应对封闭水域船舶流场偏移的影响","authors":"ZhongXin Ma","doi":"10.21278/brod75106","DOIUrl":null,"url":null,"abstract":"To investigate the flow field characteristics of full-scale ships advancing through confined waters, the international standard container ship (KRISO Container Ship) was considered as a research object in this study. Using the RANS equation, the volume of fluid method and the body force method were selected to investigate the hydrodynamic characteristics of a model-scale ship (the model-scale ratio λ=31.6) and a full-scale ship advancing through confined waters at low speed. A virtual disk was used in the full-scale model to determine the influence of the propeller on the ship’s flow field. First, the feasibility of the numerical calculations was verified. This proves the feasibility of the numerical and grid division methods. The self-propulsion point of the full-scale ship at Fr=0.108 is determined. The calculation cases of model-scale and full-scale ships (with or without virtual disks) at different water depths and distances between the ship and the shore were calculated, and the changes in the hull surface pressure, the flow field around the ship, and the wake fraction near the ship propeller disk in different calculation cases were determined and compared. The variations in the surge force, sway force, and yaw moment between the model- scale and full-scale ships were generally consistent. In very shallow water (H/T=1.3), the non-dimensional force and moment coefficients for model-scale ships increase more rapidly with decreasing distance from shore, suggesting that using model-scale ships to investigate the wall effect in very shallow water will result in predictions that are biased towards safety. By comparing full-scale ships with and without propellers, it was discovered that the surge force, sway force, and yaw moment were marginally greater in the propeller-equipped ship due to the suction effect, and the accompanying flow before and after the propeller was slightly smaller, with less asymmetry.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":"48 18","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of scale effect on flow field offset for ships in confined waters\",\"authors\":\"ZhongXin Ma\",\"doi\":\"10.21278/brod75106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the flow field characteristics of full-scale ships advancing through confined waters, the international standard container ship (KRISO Container Ship) was considered as a research object in this study. Using the RANS equation, the volume of fluid method and the body force method were selected to investigate the hydrodynamic characteristics of a model-scale ship (the model-scale ratio λ=31.6) and a full-scale ship advancing through confined waters at low speed. A virtual disk was used in the full-scale model to determine the influence of the propeller on the ship’s flow field. First, the feasibility of the numerical calculations was verified. This proves the feasibility of the numerical and grid division methods. The self-propulsion point of the full-scale ship at Fr=0.108 is determined. The calculation cases of model-scale and full-scale ships (with or without virtual disks) at different water depths and distances between the ship and the shore were calculated, and the changes in the hull surface pressure, the flow field around the ship, and the wake fraction near the ship propeller disk in different calculation cases were determined and compared. The variations in the surge force, sway force, and yaw moment between the model- scale and full-scale ships were generally consistent. In very shallow water (H/T=1.3), the non-dimensional force and moment coefficients for model-scale ships increase more rapidly with decreasing distance from shore, suggesting that using model-scale ships to investigate the wall effect in very shallow water will result in predictions that are biased towards safety. By comparing full-scale ships with and without propellers, it was discovered that the surge force, sway force, and yaw moment were marginally greater in the propeller-equipped ship due to the suction effect, and the accompanying flow before and after the propeller was slightly smaller, with less asymmetry.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":\"48 18\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod75106\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75106","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Influence of scale effect on flow field offset for ships in confined waters
To investigate the flow field characteristics of full-scale ships advancing through confined waters, the international standard container ship (KRISO Container Ship) was considered as a research object in this study. Using the RANS equation, the volume of fluid method and the body force method were selected to investigate the hydrodynamic characteristics of a model-scale ship (the model-scale ratio λ=31.6) and a full-scale ship advancing through confined waters at low speed. A virtual disk was used in the full-scale model to determine the influence of the propeller on the ship’s flow field. First, the feasibility of the numerical calculations was verified. This proves the feasibility of the numerical and grid division methods. The self-propulsion point of the full-scale ship at Fr=0.108 is determined. The calculation cases of model-scale and full-scale ships (with or without virtual disks) at different water depths and distances between the ship and the shore were calculated, and the changes in the hull surface pressure, the flow field around the ship, and the wake fraction near the ship propeller disk in different calculation cases were determined and compared. The variations in the surge force, sway force, and yaw moment between the model- scale and full-scale ships were generally consistent. In very shallow water (H/T=1.3), the non-dimensional force and moment coefficients for model-scale ships increase more rapidly with decreasing distance from shore, suggesting that using model-scale ships to investigate the wall effect in very shallow water will result in predictions that are biased towards safety. By comparing full-scale ships with and without propellers, it was discovered that the surge force, sway force, and yaw moment were marginally greater in the propeller-equipped ship due to the suction effect, and the accompanying flow before and after the propeller was slightly smaller, with less asymmetry.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.