利用堆叠集合机器学习校准光谱数据

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY IIUM Engineering Journal Pub Date : 2024-01-01 DOI:10.31436/iiumej.v25i1.2796
Mahmud Iwan Solihin, Chan Jin Yuan, Wan Siu Hong, L. Pui, A. Kit, Wafa Hossain, A. Machmudah
{"title":"利用堆叠集合机器学习校准光谱数据","authors":"Mahmud Iwan Solihin, Chan Jin Yuan, Wan Siu Hong, L. Pui, A. Kit, Wafa Hossain, A. Machmudah","doi":"10.31436/iiumej.v25i1.2796","DOIUrl":null,"url":null,"abstract":"Near infrared spectroscopy (NIRS) is a widely used analytical technique for non-destructive analysis of various materials including food fraud detection. However, the accurate calibration of NIRS data can be challenging due to the complexity of the underlying relationships between the spectral data and the target variables of interest. Ensemble learning, which combines multiple models to make predictions, has been shown to improve the accuracy and robustness of predictive models in various domains. This paper proposes stacking ensemble machine learning (SEML) for calibration of NIRS data with two levels of learning involved. Eight (8) spectroscopy datasets from public repository and previously published works by the authors are used as the case study. The model well generalized the data in the respective regression tasks with   of at least  »0.8 in the test samples and in the respective classification tasks with classification accuracy (CA) of at least »0.8 also. In addition, the proposed SEML can improve, or at least reach par with, the accuracy of individual base learners in both train and test samples for all cases of regression and classification datasets. It shows superior performance in test samples for both regression and classification datasets with respectively  ranging from 0.86 to nearly 1 and CA ranging from 0.89 to 1. ABSTRAK: Spektroskopi inframerah dekat (NIRS) adalah teknik analitikal yang banyak digunakan bagi analisa pelbagai bahan tanpa merosakkan bahan termasuk ketika mengesan penipuan makanan. Walau bagaimanapun, kalibrasi yang tepat bagi data NIRS adalah sangat mencabar kerana hubungan antara data spektral dan pemboleh ubah sasaran yang ingin dikaji bersifat kompleks. Gabungan pembelajaran (Ensemble learning), iaitu gabungan pelbagai model bagi membuat prediksi, telah terbukti dapat meningkatkan ketepatan dan kecekapan model prediksi dalam pelbagai bentuk. Kajian ini mencadangkan Turutan Gabungan Pembelajaran Mesin (Stacking Ensemble Machine Learning ) (SEML), bagi teknik penentu ukuran data NIRS melibatkan dua tahap pembelajaran. Lapan (8) set data spektroskopi dari repositori awam dan kajian terdahulu oleh pengarang telah digunakan sebagai kes kajian. Model ini menggeneralisasi data dalam tugas regresi  masing-masing sebanyak ?0.8 bagi sampel ujian dan pengelasan tugas masing-masing dengan ketepatan klasifikasi (CA) sekurang-kurangnya ?0.8. Tambahan, SEML yang dicadangkan ini dapat membantu, atau sekurang-kurangnya setanding dengan ketepatan individu dalam pembelajaran berkumpulan dalam kedua-dua sampel latihan dan ujian bagi semua kes set data regresi dan klasifikasi. Ia menunjukkan prestasi terbaik dalam sampel ujian bagi kedua-dua kumpulan set data regresi dan klasifikasi dengan masing-masing  antara 0.86 hingga hampir 1 dan antara julat 0.89 hingga 1 bagi CA.","PeriodicalId":13439,"journal":{"name":"IIUM Engineering Journal","volume":"53 22","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPECTROSCOPY DATA CALIBRATION USING STACKED ENSEMBLE MACHINE LEARNING\",\"authors\":\"Mahmud Iwan Solihin, Chan Jin Yuan, Wan Siu Hong, L. Pui, A. Kit, Wafa Hossain, A. Machmudah\",\"doi\":\"10.31436/iiumej.v25i1.2796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near infrared spectroscopy (NIRS) is a widely used analytical technique for non-destructive analysis of various materials including food fraud detection. However, the accurate calibration of NIRS data can be challenging due to the complexity of the underlying relationships between the spectral data and the target variables of interest. Ensemble learning, which combines multiple models to make predictions, has been shown to improve the accuracy and robustness of predictive models in various domains. This paper proposes stacking ensemble machine learning (SEML) for calibration of NIRS data with two levels of learning involved. Eight (8) spectroscopy datasets from public repository and previously published works by the authors are used as the case study. The model well generalized the data in the respective regression tasks with   of at least  »0.8 in the test samples and in the respective classification tasks with classification accuracy (CA) of at least »0.8 also. In addition, the proposed SEML can improve, or at least reach par with, the accuracy of individual base learners in both train and test samples for all cases of regression and classification datasets. It shows superior performance in test samples for both regression and classification datasets with respectively  ranging from 0.86 to nearly 1 and CA ranging from 0.89 to 1. ABSTRAK: Spektroskopi inframerah dekat (NIRS) adalah teknik analitikal yang banyak digunakan bagi analisa pelbagai bahan tanpa merosakkan bahan termasuk ketika mengesan penipuan makanan. Walau bagaimanapun, kalibrasi yang tepat bagi data NIRS adalah sangat mencabar kerana hubungan antara data spektral dan pemboleh ubah sasaran yang ingin dikaji bersifat kompleks. Gabungan pembelajaran (Ensemble learning), iaitu gabungan pelbagai model bagi membuat prediksi, telah terbukti dapat meningkatkan ketepatan dan kecekapan model prediksi dalam pelbagai bentuk. Kajian ini mencadangkan Turutan Gabungan Pembelajaran Mesin (Stacking Ensemble Machine Learning ) (SEML), bagi teknik penentu ukuran data NIRS melibatkan dua tahap pembelajaran. Lapan (8) set data spektroskopi dari repositori awam dan kajian terdahulu oleh pengarang telah digunakan sebagai kes kajian. Model ini menggeneralisasi data dalam tugas regresi  masing-masing sebanyak ?0.8 bagi sampel ujian dan pengelasan tugas masing-masing dengan ketepatan klasifikasi (CA) sekurang-kurangnya ?0.8. Tambahan, SEML yang dicadangkan ini dapat membantu, atau sekurang-kurangnya setanding dengan ketepatan individu dalam pembelajaran berkumpulan dalam kedua-dua sampel latihan dan ujian bagi semua kes set data regresi dan klasifikasi. Ia menunjukkan prestasi terbaik dalam sampel ujian bagi kedua-dua kumpulan set data regresi dan klasifikasi dengan masing-masing  antara 0.86 hingga hampir 1 dan antara julat 0.89 hingga 1 bagi CA.\",\"PeriodicalId\":13439,\"journal\":{\"name\":\"IIUM Engineering Journal\",\"volume\":\"53 22\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIUM Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31436/iiumej.v25i1.2796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIUM Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31436/iiumej.v25i1.2796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近红外光谱(NIRS)是一种广泛应用的分析技术,用于对各种材料进行非破坏性分析,包括食品欺诈检测。然而,由于光谱数据与相关目标变量之间潜在关系的复杂性,准确校准近红外光谱数据可能具有挑战性。集合学习将多个模型结合起来进行预测,已被证明可以提高各领域预测模型的准确性和鲁棒性。本文提出了用于校准近红外光谱数据的堆叠集合机器学习(SEML),涉及两个层次的学习。八(8)个光谱数据集来自公共资料库和作者以前发表的作品,作为案例研究。在各自的回归任务中,该模型很好地概括了数据,测试样本的回归精度至少为 "0.8";在各自的分类任务中,分类精度(CA)也至少为 "0.8"。此外,在回归和分类数据集的所有情况下,所提出的 SEML 都能在训练样本和测试样本中提高单个基础学习器的准确率,或至少与之持平。在回归和分类数据集的测试样本中,它都表现出了卓越的性能,分别从 0.86 到接近 1 不等,CA 从 0.89 到 1 不等。摘要近红外光谱(NIRS)是一种广泛使用的分析技术,可在不破坏材料的情况下分析各种材料,包括检测食品欺诈。然而,精确校准近红外光谱数据非常具有挑战性,因为光谱数据与要研究的目标变量之间的关系非常复杂。集合学习,即结合各种模型进行预测,已被证明能以各种形式提高预测模型的准确性和稳健性。本研究针对近红外光谱数据大小确定技术提出了堆叠集合机器学习(SEML),涉及两个学习阶段。八(8)个光谱数据集来自公共资料库和作者以前的研究作为研究案例。在回归任务中,该模型对测试样本和焊接任务的数据的泛化程度分别至少为 0.8%和 0.8%,分类准确度(CA)至少为 0.8%。此外,在所有回归和分类数据集的训练样本和测试样本中,所提出的 SEML 都能帮助或至少匹配集合学习中的个体准确性。它在回归和分类数据集的测试样本中表现最佳,CA 值分别在 0.86 到接近 1 之间和 0.89 到 1 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPECTROSCOPY DATA CALIBRATION USING STACKED ENSEMBLE MACHINE LEARNING
Near infrared spectroscopy (NIRS) is a widely used analytical technique for non-destructive analysis of various materials including food fraud detection. However, the accurate calibration of NIRS data can be challenging due to the complexity of the underlying relationships between the spectral data and the target variables of interest. Ensemble learning, which combines multiple models to make predictions, has been shown to improve the accuracy and robustness of predictive models in various domains. This paper proposes stacking ensemble machine learning (SEML) for calibration of NIRS data with two levels of learning involved. Eight (8) spectroscopy datasets from public repository and previously published works by the authors are used as the case study. The model well generalized the data in the respective regression tasks with   of at least  »0.8 in the test samples and in the respective classification tasks with classification accuracy (CA) of at least »0.8 also. In addition, the proposed SEML can improve, or at least reach par with, the accuracy of individual base learners in both train and test samples for all cases of regression and classification datasets. It shows superior performance in test samples for both regression and classification datasets with respectively  ranging from 0.86 to nearly 1 and CA ranging from 0.89 to 1. ABSTRAK: Spektroskopi inframerah dekat (NIRS) adalah teknik analitikal yang banyak digunakan bagi analisa pelbagai bahan tanpa merosakkan bahan termasuk ketika mengesan penipuan makanan. Walau bagaimanapun, kalibrasi yang tepat bagi data NIRS adalah sangat mencabar kerana hubungan antara data spektral dan pemboleh ubah sasaran yang ingin dikaji bersifat kompleks. Gabungan pembelajaran (Ensemble learning), iaitu gabungan pelbagai model bagi membuat prediksi, telah terbukti dapat meningkatkan ketepatan dan kecekapan model prediksi dalam pelbagai bentuk. Kajian ini mencadangkan Turutan Gabungan Pembelajaran Mesin (Stacking Ensemble Machine Learning ) (SEML), bagi teknik penentu ukuran data NIRS melibatkan dua tahap pembelajaran. Lapan (8) set data spektroskopi dari repositori awam dan kajian terdahulu oleh pengarang telah digunakan sebagai kes kajian. Model ini menggeneralisasi data dalam tugas regresi  masing-masing sebanyak ?0.8 bagi sampel ujian dan pengelasan tugas masing-masing dengan ketepatan klasifikasi (CA) sekurang-kurangnya ?0.8. Tambahan, SEML yang dicadangkan ini dapat membantu, atau sekurang-kurangnya setanding dengan ketepatan individu dalam pembelajaran berkumpulan dalam kedua-dua sampel latihan dan ujian bagi semua kes set data regresi dan klasifikasi. Ia menunjukkan prestasi terbaik dalam sampel ujian bagi kedua-dua kumpulan set data regresi dan klasifikasi dengan masing-masing  antara 0.86 hingga hampir 1 dan antara julat 0.89 hingga 1 bagi CA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIUM Engineering Journal
IIUM Engineering Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
20.00%
发文量
57
审稿时长
40 weeks
期刊介绍: The IIUM Engineering Journal, published biannually (June and December), is a peer-reviewed open-access journal of the Faculty of Engineering, International Islamic University Malaysia (IIUM). The IIUM Engineering Journal publishes original research findings as regular papers, review papers (by invitation). The Journal provides a platform for Engineers, Researchers, Academicians, and Practitioners who are highly motivated in contributing to the Engineering disciplines, and Applied Sciences. It also welcomes contributions that address solutions to the specific challenges of the developing world, and address science and technology issues from an Islamic and multidisciplinary perspective. Subject areas suitable for publication are as follows: -Chemical and Biotechnology Engineering -Civil and Environmental Engineering -Computer Science and Information Technology -Electrical, Computer, and Communications Engineering -Engineering Mathematics and Applied Science -Materials and Manufacturing Engineering -Mechanical and Aerospace Engineering -Mechatronics and Automation Engineering
期刊最新文献
PHOTOVOLTAIC MODULE TEMPERATURE ESTIMATION MODEL FOR THE ONE-TIME-POINT DAILY ESTIMATION METHOD BIPHASIC CRUDE PALM OIL DECHLORINATION: EFFECT OF VOLUME RATIO AND CONCENTRATION OF SODIUM SILICATE TO HYDROXIDE ION DISTRIBUTION MIXING SEQUENCE EFFECT OF CEMENT COMPOSITES WITH CARBON FIBRES EFFECTS OF SOIL ERODIBILITY ON RIVERBANK EROSION AND FAILURES KEY SUCCESS FACTORS IN ROAD MAINTENANCE MANAGEMENT PROJECTS (A CASE STUDY OF MAYSAN PROVINCE, IRAQ)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1