{"title":"考虑水弹性效应的铝制平板加劲板结构进水 CFD-FEM 模拟","authors":"Jialong Jiao","doi":"10.21278/brod75108","DOIUrl":null,"url":null,"abstract":"In this paper, the slamming loads and structural response of an aluminium flat stiffened-plate structure during calm water entry considering the hydroelasticity effects are studied by a partitioned CFD-FEM two-way coupled method. The target structure is simplified as one segment of an idealized ship grillage structure, comprising flat plate and stiffeners. The typical numerical results are analyzed such as vertical displacement, velocity, acceleration, impact loads, and structural stress of the flexible flat bottom grillage structure considering the hydroelasticity effect and air cushion effect in different free fall height conditions. Drop test results of the same structure and other existing numerical simulation data by both coupled and uncoupled solutions in the literature are used for comparison with the present numerical simulation results. This study provides a practical means to simulate the slamming behaviour and structural response of ship structures, which is useful for predicting ship hull stiffened panel loads and related structural design.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":"17 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD-FEM simulation of water entry of aluminium flat stiffened plate structure considering the effects of hydroelasticity\",\"authors\":\"Jialong Jiao\",\"doi\":\"10.21278/brod75108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the slamming loads and structural response of an aluminium flat stiffened-plate structure during calm water entry considering the hydroelasticity effects are studied by a partitioned CFD-FEM two-way coupled method. The target structure is simplified as one segment of an idealized ship grillage structure, comprising flat plate and stiffeners. The typical numerical results are analyzed such as vertical displacement, velocity, acceleration, impact loads, and structural stress of the flexible flat bottom grillage structure considering the hydroelasticity effect and air cushion effect in different free fall height conditions. Drop test results of the same structure and other existing numerical simulation data by both coupled and uncoupled solutions in the literature are used for comparison with the present numerical simulation results. This study provides a practical means to simulate the slamming behaviour and structural response of ship structures, which is useful for predicting ship hull stiffened panel loads and related structural design.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod75108\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75108","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
CFD-FEM simulation of water entry of aluminium flat stiffened plate structure considering the effects of hydroelasticity
In this paper, the slamming loads and structural response of an aluminium flat stiffened-plate structure during calm water entry considering the hydroelasticity effects are studied by a partitioned CFD-FEM two-way coupled method. The target structure is simplified as one segment of an idealized ship grillage structure, comprising flat plate and stiffeners. The typical numerical results are analyzed such as vertical displacement, velocity, acceleration, impact loads, and structural stress of the flexible flat bottom grillage structure considering the hydroelasticity effect and air cushion effect in different free fall height conditions. Drop test results of the same structure and other existing numerical simulation data by both coupled and uncoupled solutions in the literature are used for comparison with the present numerical simulation results. This study provides a practical means to simulate the slamming behaviour and structural response of ship structures, which is useful for predicting ship hull stiffened panel loads and related structural design.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.