{"title":"用和谐搜索解决多级图像阈值问题的新型混合灰狼优化算法","authors":"Alper Ünlü, I. Ilhan","doi":"10.47112/neufmbd.2023.21","DOIUrl":null,"url":null,"abstract":"Çok seviyeli görüntü eşikleme, görüntüyü ileri düzeyde anlamlı özelliklere ayırmak için kullanılan önemli bir görüntü işleme tekniğidir. Bu teknik, metasezgisel optimizasyon algoritmaları ile birlikte kullanılarak hesaplama süresi açısından başarılı sonuçlar elde edilebilmektedir. Bu çalışmada, çok seviyeli görüntü eşikleme problemini çözmek için GWO-HS olarak isimlendirilen hibrit bir algoritma önerilmiştir. Önerilen algoritma gri kurt optimizasyon (GWO) ve harmoni arama (HS) algoritmaları hibritlenerek elde edilmiştir. GWO-HS algoritmasının performansı beş diğer algoritmanın performansları ile karşılaştırılmıştır. Karşılaştırmalarda Otsu ve Kapur entropi tabanlı eşikleme yöntemleri kullanılmıştır. Deneylerde, görüntü işleme çalışmalarında iyi bilinen ve yaygın olarak kullanılan altı görüntü tercih edilmiştir. Her bir görüntü üzerinde 2’den 10’a kadar değişen seviyeler için eşikleme işlemi uygulanmıştır. Sonuçlar, önerilen GWO-HS algoritmasının, diğer algoritmalara kıyasla özellikle yüksek eşik seviyeleri için daha üstün bir performansa sahip olduğunu göstermiştir.","PeriodicalId":184558,"journal":{"name":"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi","volume":"111 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Hybrid Gray Wolf Optimization Algorithm with Harmony Search to Solve Multi-Level Image Thresholding Problem\",\"authors\":\"Alper Ünlü, I. Ilhan\",\"doi\":\"10.47112/neufmbd.2023.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Çok seviyeli görüntü eşikleme, görüntüyü ileri düzeyde anlamlı özelliklere ayırmak için kullanılan önemli bir görüntü işleme tekniğidir. Bu teknik, metasezgisel optimizasyon algoritmaları ile birlikte kullanılarak hesaplama süresi açısından başarılı sonuçlar elde edilebilmektedir. Bu çalışmada, çok seviyeli görüntü eşikleme problemini çözmek için GWO-HS olarak isimlendirilen hibrit bir algoritma önerilmiştir. Önerilen algoritma gri kurt optimizasyon (GWO) ve harmoni arama (HS) algoritmaları hibritlenerek elde edilmiştir. GWO-HS algoritmasının performansı beş diğer algoritmanın performansları ile karşılaştırılmıştır. Karşılaştırmalarda Otsu ve Kapur entropi tabanlı eşikleme yöntemleri kullanılmıştır. Deneylerde, görüntü işleme çalışmalarında iyi bilinen ve yaygın olarak kullanılan altı görüntü tercih edilmiştir. Her bir görüntü üzerinde 2’den 10’a kadar değişen seviyeler için eşikleme işlemi uygulanmıştır. Sonuçlar, önerilen GWO-HS algoritmasının, diğer algoritmalara kıyasla özellikle yüksek eşik seviyeleri için daha üstün bir performansa sahip olduğunu göstermiştir.\",\"PeriodicalId\":184558,\"journal\":{\"name\":\"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi\",\"volume\":\"111 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47112/neufmbd.2023.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47112/neufmbd.2023.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Hybrid Gray Wolf Optimization Algorithm with Harmony Search to Solve Multi-Level Image Thresholding Problem
Çok seviyeli görüntü eşikleme, görüntüyü ileri düzeyde anlamlı özelliklere ayırmak için kullanılan önemli bir görüntü işleme tekniğidir. Bu teknik, metasezgisel optimizasyon algoritmaları ile birlikte kullanılarak hesaplama süresi açısından başarılı sonuçlar elde edilebilmektedir. Bu çalışmada, çok seviyeli görüntü eşikleme problemini çözmek için GWO-HS olarak isimlendirilen hibrit bir algoritma önerilmiştir. Önerilen algoritma gri kurt optimizasyon (GWO) ve harmoni arama (HS) algoritmaları hibritlenerek elde edilmiştir. GWO-HS algoritmasının performansı beş diğer algoritmanın performansları ile karşılaştırılmıştır. Karşılaştırmalarda Otsu ve Kapur entropi tabanlı eşikleme yöntemleri kullanılmıştır. Deneylerde, görüntü işleme çalışmalarında iyi bilinen ve yaygın olarak kullanılan altı görüntü tercih edilmiştir. Her bir görüntü üzerinde 2’den 10’a kadar değişen seviyeler için eşikleme işlemi uygulanmıştır. Sonuçlar, önerilen GWO-HS algoritmasının, diğer algoritmalara kıyasla özellikle yüksek eşik seviyeleri için daha üstün bir performansa sahip olduğunu göstermiştir.