用于天花板隔热的高岭土、硅藻土和稻壳灰土工聚合物

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Buildings Pub Date : 2023-12-31 DOI:10.3390/buildings14010112
Cinthya Alvarado, Daniel Martínez-Cerna, Hernán Alvarado-Quintana
{"title":"用于天花板隔热的高岭土、硅藻土和稻壳灰土工聚合物","authors":"Cinthya Alvarado, Daniel Martínez-Cerna, Hernán Alvarado-Quintana","doi":"10.3390/buildings14010112","DOIUrl":null,"url":null,"abstract":"In this study, geopolymers made of metakaolin (MK), diatomite (D), and rice husk ash (RHA) were developed for ceiling thermal insulation in houses to provide protection against cold temperatures. The influence of the constituent mixing ratio and the temperature of curing on the heat conductivity and compressive strength of the geopolymer was investigated. Specimens were formed according to a 10-level mix design with three replicates and subjected to curing at 40 °C and 80 °C. Heat conductivity and compressive strength were determined in accordance with established standards. The simplex lattice method was used to obtain the response surfaces, contour plots, and tracking curves. The geopolymers under study displayed a reduction in heat conductivity and an increase in compressive strength when the curing temperature was raised. The optimal mixing ratio to achieve a balance between the compressive strength and thermal conductivity of the geopolymers investigated was 0.50 MK and 0.50 RHA. Diatomite’s thermal insulation contribution is neutralized when crystals from the geopolymer gel fill the pore volume. The mixture’s optimal results were achieved when cured at 80 °C, demonstrating a thermal conductivity of 0.10 W/m·K and a compressive strength of 5.37 MPa.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"109 44","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geopolymer Made from Kaolin, Diatomite, and Rice Husk Ash for Ceiling Thermal Insulation\",\"authors\":\"Cinthya Alvarado, Daniel Martínez-Cerna, Hernán Alvarado-Quintana\",\"doi\":\"10.3390/buildings14010112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, geopolymers made of metakaolin (MK), diatomite (D), and rice husk ash (RHA) were developed for ceiling thermal insulation in houses to provide protection against cold temperatures. The influence of the constituent mixing ratio and the temperature of curing on the heat conductivity and compressive strength of the geopolymer was investigated. Specimens were formed according to a 10-level mix design with three replicates and subjected to curing at 40 °C and 80 °C. Heat conductivity and compressive strength were determined in accordance with established standards. The simplex lattice method was used to obtain the response surfaces, contour plots, and tracking curves. The geopolymers under study displayed a reduction in heat conductivity and an increase in compressive strength when the curing temperature was raised. The optimal mixing ratio to achieve a balance between the compressive strength and thermal conductivity of the geopolymers investigated was 0.50 MK and 0.50 RHA. Diatomite’s thermal insulation contribution is neutralized when crystals from the geopolymer gel fill the pore volume. The mixture’s optimal results were achieved when cured at 80 °C, demonstrating a thermal conductivity of 0.10 W/m·K and a compressive strength of 5.37 MPa.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"109 44\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010112\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010112","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了由偏高岭土(MK)、硅藻土(D)和稻壳灰(RHA)制成的土工聚合物,用于房屋天花板隔热,以抵御低温。研究了成分混合比例和固化温度对土工聚合物导热性和抗压强度的影响。试样按照 10 级混合设计制成,有三次重复,分别在 40 °C 和 80 °C 下固化。导热系数和抗压强度按照既定标准测定。采用简单网格法获得响应面、等值线图和跟踪曲线。当固化温度升高时,所研究的土工聚合物的导热系数降低,抗压强度升高。要在所研究的土工聚合物的抗压强度和导热系数之间取得平衡,最佳混合比例为 0.50 MK 和 0.50 RHA。当土工聚合物凝胶的晶体充满孔隙时,硅藻土的隔热作用就会被中和。混合物在 80 °C 固化时达到最佳效果,导热系数为 0.10 W/m-K,抗压强度为 5.37 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geopolymer Made from Kaolin, Diatomite, and Rice Husk Ash for Ceiling Thermal Insulation
In this study, geopolymers made of metakaolin (MK), diatomite (D), and rice husk ash (RHA) were developed for ceiling thermal insulation in houses to provide protection against cold temperatures. The influence of the constituent mixing ratio and the temperature of curing on the heat conductivity and compressive strength of the geopolymer was investigated. Specimens were formed according to a 10-level mix design with three replicates and subjected to curing at 40 °C and 80 °C. Heat conductivity and compressive strength were determined in accordance with established standards. The simplex lattice method was used to obtain the response surfaces, contour plots, and tracking curves. The geopolymers under study displayed a reduction in heat conductivity and an increase in compressive strength when the curing temperature was raised. The optimal mixing ratio to achieve a balance between the compressive strength and thermal conductivity of the geopolymers investigated was 0.50 MK and 0.50 RHA. Diatomite’s thermal insulation contribution is neutralized when crystals from the geopolymer gel fill the pore volume. The mixture’s optimal results were achieved when cured at 80 °C, demonstrating a thermal conductivity of 0.10 W/m·K and a compressive strength of 5.37 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
期刊最新文献
Urban Building Energy Modeling to Support Climate-Sensitive Planning in the Suburban Areas of Santiago de Chile Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms Investigation on Seismic Behavior of Prestressed Steel Strand Composite Reinforced High-Strength Concrete Column A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches Analytical Study of Structural Conformation and Prestressing State of Drum-Shaped Honeycomb Quad-Strut Cable Dome Structure with Different Calculation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1