{"title":"基于深度用户兴趣画像的电子商务产品个性化推荐方法","authors":"Jingyi Li, Shaowu Bao","doi":"10.4018/ijitwe.335123","DOIUrl":null,"url":null,"abstract":"In dynamic e-commerce environments, researchers strive to understand users' interests and behaviors to enhance personalized product recommendations. Traditional collaborative filtering (CF) algorithms have encountered computational challenges such as similarity errors and user rating habits. This research addresses these issues by emphasizing user profiling techniques. This article proposes an innovative user profile updating technique that explores the key components of user profile (basic information, behavior, and domain knowledge). An enhanced kernel fuzzy mean clustering algorithm constructs a dynamic user portrait based on domain knowledge mapping. This dynamic portrait is combined with e-commerce personalized recommendation to improve the accuracy of inferring user interests, thus facilitating accurate recommendation on the platform. The method proposed in this article greatly improves the overall performance and provides strong support for developing smarter and more personalized e-commerce product recommendation systems.","PeriodicalId":51925,"journal":{"name":"International Journal of Information Technology and Web Engineering","volume":" 36","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized Recommendation Method of E-Commerce Products Based on In-Depth User Interest Portraits\",\"authors\":\"Jingyi Li, Shaowu Bao\",\"doi\":\"10.4018/ijitwe.335123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dynamic e-commerce environments, researchers strive to understand users' interests and behaviors to enhance personalized product recommendations. Traditional collaborative filtering (CF) algorithms have encountered computational challenges such as similarity errors and user rating habits. This research addresses these issues by emphasizing user profiling techniques. This article proposes an innovative user profile updating technique that explores the key components of user profile (basic information, behavior, and domain knowledge). An enhanced kernel fuzzy mean clustering algorithm constructs a dynamic user portrait based on domain knowledge mapping. This dynamic portrait is combined with e-commerce personalized recommendation to improve the accuracy of inferring user interests, thus facilitating accurate recommendation on the platform. The method proposed in this article greatly improves the overall performance and provides strong support for developing smarter and more personalized e-commerce product recommendation systems.\",\"PeriodicalId\":51925,\"journal\":{\"name\":\"International Journal of Information Technology and Web Engineering\",\"volume\":\" 36\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Web Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.335123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Web Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.335123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Personalized Recommendation Method of E-Commerce Products Based on In-Depth User Interest Portraits
In dynamic e-commerce environments, researchers strive to understand users' interests and behaviors to enhance personalized product recommendations. Traditional collaborative filtering (CF) algorithms have encountered computational challenges such as similarity errors and user rating habits. This research addresses these issues by emphasizing user profiling techniques. This article proposes an innovative user profile updating technique that explores the key components of user profile (basic information, behavior, and domain knowledge). An enhanced kernel fuzzy mean clustering algorithm constructs a dynamic user portrait based on domain knowledge mapping. This dynamic portrait is combined with e-commerce personalized recommendation to improve the accuracy of inferring user interests, thus facilitating accurate recommendation on the platform. The method proposed in this article greatly improves the overall performance and provides strong support for developing smarter and more personalized e-commerce product recommendation systems.
期刊介绍:
Organizations are continuously overwhelmed by a variety of new information technologies, many are Web based. These new technologies are capitalizing on the widespread use of network and communication technologies for seamless integration of various issues in information and knowledge sharing within and among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross platform and multidisciplinary strategy to research and practice.