{"title":"QGA-BP 神经网络在政府平台债务风险评估中的应用","authors":"Qingping Li, Ming Liu, Yao Zhang","doi":"10.4018/ijitwe.335124","DOIUrl":null,"url":null,"abstract":"How to correctly understand the existence of local government debt, study its risk classification and impact, give full play to the “dual nature” of debt with a full-caliber indicator system, and avoid debt risks to the greatest extent. That is the research direction of this article. In order to improve the accuracy and efficiency of risk assessment and effectively reduce the debt risk of government platform companies, a risk assessment method based on optimized back-propagation (BP) neural network is proposed. First, the method uses quantum genetic algorithm (quantum genetic algorithm, QGA) to adjust and determine the initial weight and threshold of BP neural network and realize the optimization of BP neural network model parameter setting. Then, the QGA-BP debt risk assessment of government platforms is verified that it performs well in the debt risk prediction of government platform companies, and its prediction accuracy and prediction speed are improved.","PeriodicalId":51925,"journal":{"name":"International Journal of Information Technology and Web Engineering","volume":"95 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of QGA-BP Neural Network in Debt Risk Assessment of Government Platforms\",\"authors\":\"Qingping Li, Ming Liu, Yao Zhang\",\"doi\":\"10.4018/ijitwe.335124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to correctly understand the existence of local government debt, study its risk classification and impact, give full play to the “dual nature” of debt with a full-caliber indicator system, and avoid debt risks to the greatest extent. That is the research direction of this article. In order to improve the accuracy and efficiency of risk assessment and effectively reduce the debt risk of government platform companies, a risk assessment method based on optimized back-propagation (BP) neural network is proposed. First, the method uses quantum genetic algorithm (quantum genetic algorithm, QGA) to adjust and determine the initial weight and threshold of BP neural network and realize the optimization of BP neural network model parameter setting. Then, the QGA-BP debt risk assessment of government platforms is verified that it performs well in the debt risk prediction of government platform companies, and its prediction accuracy and prediction speed are improved.\",\"PeriodicalId\":51925,\"journal\":{\"name\":\"International Journal of Information Technology and Web Engineering\",\"volume\":\"95 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Web Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.335124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Web Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.335124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Application of QGA-BP Neural Network in Debt Risk Assessment of Government Platforms
How to correctly understand the existence of local government debt, study its risk classification and impact, give full play to the “dual nature” of debt with a full-caliber indicator system, and avoid debt risks to the greatest extent. That is the research direction of this article. In order to improve the accuracy and efficiency of risk assessment and effectively reduce the debt risk of government platform companies, a risk assessment method based on optimized back-propagation (BP) neural network is proposed. First, the method uses quantum genetic algorithm (quantum genetic algorithm, QGA) to adjust and determine the initial weight and threshold of BP neural network and realize the optimization of BP neural network model parameter setting. Then, the QGA-BP debt risk assessment of government platforms is verified that it performs well in the debt risk prediction of government platform companies, and its prediction accuracy and prediction speed are improved.
期刊介绍:
Organizations are continuously overwhelmed by a variety of new information technologies, many are Web based. These new technologies are capitalizing on the widespread use of network and communication technologies for seamless integration of various issues in information and knowledge sharing within and among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross platform and multidisciplinary strategy to research and practice.