草本植物和作为生物活性成分的β-谷甾醇在预防老年痴呆症方面的潜在作用

IF 0.7 Q4 PLANT SCIENCES Plant Science Today Pub Date : 2023-12-28 DOI:10.14719/pst.2420
Apoorva Mishra, Saumya Das, Soni Kumari
{"title":"草本植物和作为生物活性成分的β-谷甾醇在预防老年痴呆症方面的潜在作用","authors":"Apoorva Mishra, Saumya Das, Soni Kumari","doi":"10.14719/pst.2420","DOIUrl":null,"url":null,"abstract":"Alzheimer's Disease (AD), a neurological ailment, mostly affects the older population all around the world. The rational therapies show limited efficacy, adverse effects, and poor patient compliance; therefore, herbal drugs are considered a suitable supplement to the drug therapy for the treatment of AD. According to research, herbal drugs reduce symptoms of AD and also improve brain functioning through the inhibition of beta amyloid, gamma-secretase, and acetylcholine, along with the regulation of antioxidants and the activation of alpha-secretase. Various herbal plants like Salvia officinalis L., Bertholletia excelsa L., Withania somnifera L., and Urtica dioica L. help slow down the progression of AD by scavenging free radicals, inhibiting lipid peroxidation, beta amyloid and tau phosphorylation. Beta sitosterol, a phytosterol found abundantly in plants, has the ability to cross the Blood Brain Barrier and thus acts as a bioactive constituent in circumventing various neurological disorders. Numerous in vitro and in vivo investigations indicate that beta sitosterol shows immunomodulatory, lipid-lowering, as well as antioxidant properties. The plant sterol, beta sitosterol, has the capacity to decrease beta-amyloid platelet synthesis, indicating that it might be helpful in the treatment and prevention of AD. Treatment with beta-sitosterol can lessen plaque burden and also enhance spatial learning and recognition abilities in patients suffering from AD.","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":"52 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential role of herbal plants and beta sitosterol as a bioactive constituent in circumventing Alzheimer’s Disease\",\"authors\":\"Apoorva Mishra, Saumya Das, Soni Kumari\",\"doi\":\"10.14719/pst.2420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer's Disease (AD), a neurological ailment, mostly affects the older population all around the world. The rational therapies show limited efficacy, adverse effects, and poor patient compliance; therefore, herbal drugs are considered a suitable supplement to the drug therapy for the treatment of AD. According to research, herbal drugs reduce symptoms of AD and also improve brain functioning through the inhibition of beta amyloid, gamma-secretase, and acetylcholine, along with the regulation of antioxidants and the activation of alpha-secretase. Various herbal plants like Salvia officinalis L., Bertholletia excelsa L., Withania somnifera L., and Urtica dioica L. help slow down the progression of AD by scavenging free radicals, inhibiting lipid peroxidation, beta amyloid and tau phosphorylation. Beta sitosterol, a phytosterol found abundantly in plants, has the ability to cross the Blood Brain Barrier and thus acts as a bioactive constituent in circumventing various neurological disorders. Numerous in vitro and in vivo investigations indicate that beta sitosterol shows immunomodulatory, lipid-lowering, as well as antioxidant properties. The plant sterol, beta sitosterol, has the capacity to decrease beta-amyloid platelet synthesis, indicating that it might be helpful in the treatment and prevention of AD. Treatment with beta-sitosterol can lessen plaque burden and also enhance spatial learning and recognition abilities in patients suffering from AD.\",\"PeriodicalId\":20236,\"journal\":{\"name\":\"Plant Science Today\",\"volume\":\"52 2\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14719/pst.2420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种神经系统疾病,主要影响世界各地的老年人群。合理疗法的疗效有限,且存在不良反应,患者依从性差;因此,草药被认为是药物疗法治疗阿尔茨海默病的合适补充。根据研究,草药通过抑制β-淀粉样蛋白、γ-分泌酶和乙酰胆碱,以及调节抗氧化剂和激活α-分泌酶,可减轻注意力缺失症的症状,并改善大脑功能。Salvia officinalis L.、Bertholletia excelsa L.、Withania somnifera L.和 Urtica dioica L.等多种草本植物通过清除自由基、抑制脂质过氧化、β-淀粉样蛋白和 tau 磷酸化,有助于减缓注意力缺失症的进展。β-谷甾醇是一种大量存在于植物中的植物甾醇,具有穿越血脑屏障的能力,因此可作为一种生物活性成分用于预防各种神经系统疾病。大量体外和体内研究表明,β-谷甾醇具有免疫调节、降血脂和抗氧化特性。植物固醇--β-谷甾醇能够减少β-淀粉样蛋白血小板的合成,这表明它可能有助于治疗和预防注意力缺失症。使用β-谷甾醇治疗可减轻斑块负担,还能提高注意力缺失症患者的空间学习和识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential role of herbal plants and beta sitosterol as a bioactive constituent in circumventing Alzheimer’s Disease
Alzheimer's Disease (AD), a neurological ailment, mostly affects the older population all around the world. The rational therapies show limited efficacy, adverse effects, and poor patient compliance; therefore, herbal drugs are considered a suitable supplement to the drug therapy for the treatment of AD. According to research, herbal drugs reduce symptoms of AD and also improve brain functioning through the inhibition of beta amyloid, gamma-secretase, and acetylcholine, along with the regulation of antioxidants and the activation of alpha-secretase. Various herbal plants like Salvia officinalis L., Bertholletia excelsa L., Withania somnifera L., and Urtica dioica L. help slow down the progression of AD by scavenging free radicals, inhibiting lipid peroxidation, beta amyloid and tau phosphorylation. Beta sitosterol, a phytosterol found abundantly in plants, has the ability to cross the Blood Brain Barrier and thus acts as a bioactive constituent in circumventing various neurological disorders. Numerous in vitro and in vivo investigations indicate that beta sitosterol shows immunomodulatory, lipid-lowering, as well as antioxidant properties. The plant sterol, beta sitosterol, has the capacity to decrease beta-amyloid platelet synthesis, indicating that it might be helpful in the treatment and prevention of AD. Treatment with beta-sitosterol can lessen plaque burden and also enhance spatial learning and recognition abilities in patients suffering from AD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Science Today
Plant Science Today PLANT SCIENCES-
CiteScore
1.50
自引率
11.10%
发文量
177
期刊最新文献
Effects of hydrophilic and lipophilic emulsifier concentrations on the characteristics of Germander essential oil nanoemulsions prepared using the nanoprecipitation technique Optimization of a soil type prediction method based on the deep learning model and vegetation characteristics Phytochemicals Analysis and Antioxidant Potential of Hydroalcoholic Extracts of Fresh Fruits of Pistacia atlantica and Pistacia khinjuk Evaluation of zinc application methods and integrated nutrient management on variation in growth, yield and yield contributing factors in wheat Evaluation of the suitability of three weed species as alternative cover crops in smallholder oil palm plantations through plant spacing management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1