在基于机器学习的合成孔径雷达自动跟踪中使用 ISAR 训练数据的可行性分析

E. Yiğit, S. Demirci, Umut Özkaya
{"title":"在基于机器学习的合成孔径雷达自动跟踪中使用 ISAR 训练数据的可行性分析","authors":"E. Yiğit, S. Demirci, Umut Özkaya","doi":"10.29137/umagd.1402020","DOIUrl":null,"url":null,"abstract":"Processing of synthetic aperture radar (SAR) images for automatic target recognition (ATR) is a critical application especially in military surveillance. In particular, numerous machine learning-based SAR ATR methods have been proposed for this task. However, data training and testing stages of all these methods are based on the exploitation of SAR signatures of the target under investigation. Considering the high variability of radar targets, obtaining such signature data is obviously a costly and time consuming process. In this study, therefore, a feasibility analysis of the use of inverse-SAR (ISAR) training data in SAR ATR has been made for the first time. The turntable ISAR and circular SAR images of three different vehicles are used in training and testing is performed by means of SAR images of three similar targets within the publicly available MSTAR dataset. Also, three most prominent machine learning methods, namely KNN, SVM and ANN are used in conjunction with three different feature extraction algorithms namely, GLRLM, GLSZM and GLCM. The obtained results reveal that the GLCM+SVM algorithm pair is the most effective model with 85% accuracy.","PeriodicalId":23481,"journal":{"name":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Feasibility Analysis of the Use of ISAR Training Data in Machine Learning-Based SAR ATR\",\"authors\":\"E. Yiğit, S. Demirci, Umut Özkaya\",\"doi\":\"10.29137/umagd.1402020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing of synthetic aperture radar (SAR) images for automatic target recognition (ATR) is a critical application especially in military surveillance. In particular, numerous machine learning-based SAR ATR methods have been proposed for this task. However, data training and testing stages of all these methods are based on the exploitation of SAR signatures of the target under investigation. Considering the high variability of radar targets, obtaining such signature data is obviously a costly and time consuming process. In this study, therefore, a feasibility analysis of the use of inverse-SAR (ISAR) training data in SAR ATR has been made for the first time. The turntable ISAR and circular SAR images of three different vehicles are used in training and testing is performed by means of SAR images of three similar targets within the publicly available MSTAR dataset. Also, three most prominent machine learning methods, namely KNN, SVM and ANN are used in conjunction with three different feature extraction algorithms namely, GLRLM, GLSZM and GLCM. The obtained results reveal that the GLCM+SVM algorithm pair is the most effective model with 85% accuracy.\",\"PeriodicalId\":23481,\"journal\":{\"name\":\"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29137/umagd.1402020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29137/umagd.1402020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

处理合成孔径雷达(SAR)图像以进行目标自动识别(ATR)是一项重要应用,尤其是在军事监控领域。针对这一任务,人们提出了许多基于机器学习的合成孔径雷达自动目标识别(ATR)方法。然而,所有这些方法的数据训练和测试阶段都是基于对调查目标的合成孔径雷达特征的利用。考虑到雷达目标的高变异性,获取此类特征数据显然是一个既费钱又费时的过程。因此,本研究首次对在合成孔径雷达自动跟踪器中使用反合成孔径雷达(ISAR)训练数据进行了可行性分析。训练中使用了三种不同飞行器的转盘 ISAR 和圆形 SAR 图像,测试则通过公开的 MSTAR 数据集中三个类似目标的 SAR 图像进行。此外,KNN、SVM 和 ANN 这三种最著名的机器学习方法与 GLRLM、GLSZM 和 GLCM 这三种不同的特征提取算法结合使用。结果显示,GLCM+SVM 算法对是最有效的模型,准确率高达 85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Feasibility Analysis of the Use of ISAR Training Data in Machine Learning-Based SAR ATR
Processing of synthetic aperture radar (SAR) images for automatic target recognition (ATR) is a critical application especially in military surveillance. In particular, numerous machine learning-based SAR ATR methods have been proposed for this task. However, data training and testing stages of all these methods are based on the exploitation of SAR signatures of the target under investigation. Considering the high variability of radar targets, obtaining such signature data is obviously a costly and time consuming process. In this study, therefore, a feasibility analysis of the use of inverse-SAR (ISAR) training data in SAR ATR has been made for the first time. The turntable ISAR and circular SAR images of three different vehicles are used in training and testing is performed by means of SAR images of three similar targets within the publicly available MSTAR dataset. Also, three most prominent machine learning methods, namely KNN, SVM and ANN are used in conjunction with three different feature extraction algorithms namely, GLRLM, GLSZM and GLCM. The obtained results reveal that the GLCM+SVM algorithm pair is the most effective model with 85% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ticari Bir Pistonlu Motorda JP8-Elementel Bor Katkısının Performansa Etkisinin Deneysel İncelenmesi Behavior of reinforced concrete beams under different angled cold joints at shear zone Pim Disk Aşınma Test Cihazı Tasarımı ve İmalatı Hem İşletmeci Hem de Kullanıcı Açısından Kent İçi Otobüs Hatlarının Performanslarının Değerlendirilmesi Thermodynamic Analysis of Liquid Steel Production in an ElectricArc Furnace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1