基于视在功率检测的 WPT 系统实时频率自适应跟踪控制

Hongwei Feng, Yuanyuan Liu, Conggui Huang, Linbo Xie, Bin Qi
{"title":"基于视在功率检测的 WPT 系统实时频率自适应跟踪控制","authors":"Hongwei Feng, Yuanyuan Liu, Conggui Huang, Linbo Xie, Bin Qi","doi":"10.1155/2023/1390828","DOIUrl":null,"url":null,"abstract":"In wireless power transfer (WPT) systems, inverters are used to achieve high-frequency conversion of DC/AC, and their conversion efficiency and working frequency are key factors affecting the system’s power transfer efficiency. In practical applications, many hardware issues, such as power transistor shutdown and loss, are the main reasons that affect the inverter conversion efficiency. On the other hand, the working frequency of WPT systems ranges from hundreds of kHz to a few MHz, and traditional voltage and current phasor estimation requires a very high sampling rate which is difficult to achieve. To overcome these limitations, this paper introduces a phase-shifting full bridge inverter using a zero-voltage switching (ZVS) soft switching technology to optimize the conversion efficiency of the inverter. Meanwhile, apparent power is introduced to detect the operating frequency and phase angle. Combined with an FPGA soft switching control strategy, this approach allows for the quick adjustment of the driving pulse of MOS transistors, as well as the voltage and current at the transmitting end, to a completely symmetrical state in real-time, effectively suppressing frequency offset and achieving efficient frequency tracking control and maximum efficiency tracking (MET) control of the WPT system. Through simulation and experiments, the ZVS soft switching technology has been achieved with the inverter control strategy, leading to improved conversion efficiency. The frequency offset that can be corrected can reach 0.1 Hz using the apparent power detection method, and the maximum transfer efficiency of the WPT system can reach 91%.","PeriodicalId":507857,"journal":{"name":"International Journal of Intelligent Systems","volume":"78 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Frequency Adaptive Tracking Control of the WPT System Based on Apparent Power Detection\",\"authors\":\"Hongwei Feng, Yuanyuan Liu, Conggui Huang, Linbo Xie, Bin Qi\",\"doi\":\"10.1155/2023/1390828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wireless power transfer (WPT) systems, inverters are used to achieve high-frequency conversion of DC/AC, and their conversion efficiency and working frequency are key factors affecting the system’s power transfer efficiency. In practical applications, many hardware issues, such as power transistor shutdown and loss, are the main reasons that affect the inverter conversion efficiency. On the other hand, the working frequency of WPT systems ranges from hundreds of kHz to a few MHz, and traditional voltage and current phasor estimation requires a very high sampling rate which is difficult to achieve. To overcome these limitations, this paper introduces a phase-shifting full bridge inverter using a zero-voltage switching (ZVS) soft switching technology to optimize the conversion efficiency of the inverter. Meanwhile, apparent power is introduced to detect the operating frequency and phase angle. Combined with an FPGA soft switching control strategy, this approach allows for the quick adjustment of the driving pulse of MOS transistors, as well as the voltage and current at the transmitting end, to a completely symmetrical state in real-time, effectively suppressing frequency offset and achieving efficient frequency tracking control and maximum efficiency tracking (MET) control of the WPT system. Through simulation and experiments, the ZVS soft switching technology has been achieved with the inverter control strategy, leading to improved conversion efficiency. The frequency offset that can be corrected can reach 0.1 Hz using the apparent power detection method, and the maximum transfer efficiency of the WPT system can reach 91%.\",\"PeriodicalId\":507857,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"78 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1390828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1390828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在无线功率传输(WPT)系统中,逆变器用于实现直流/交流的高频转换,其转换效率和工作频率是影响系统功率传输效率的关键因素。在实际应用中,功率晶体管关断和损耗等诸多硬件问题是影响逆变器转换效率的主要原因。另一方面,WPT 系统的工作频率从几百 kHz 到几 MHz 不等,而传统的电压和电流相位估计需要很高的采样率,很难实现。为了克服这些限制,本文介绍了一种采用零电压开关(ZVS)软开关技术的移相全桥逆变器,以优化逆变器的转换效率。同时,引入视在功率来检测工作频率和相位角。这种方法与 FPGA 软开关控制策略相结合,可实时将 MOS 晶体管的驱动脉冲以及发射端的电压和电流快速调整到完全对称的状态,有效抑制频率偏移,实现 WPT 系统的高效频率跟踪控制和最大效率跟踪(MET)控制。通过仿真和实验,逆变器控制策略实现了 ZVS 软开关技术,从而提高了转换效率。利用视在功率检测方法,可纠正的频率偏移可达 0.1 Hz,WPT 系统的最大转换效率可达 91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Frequency Adaptive Tracking Control of the WPT System Based on Apparent Power Detection
In wireless power transfer (WPT) systems, inverters are used to achieve high-frequency conversion of DC/AC, and their conversion efficiency and working frequency are key factors affecting the system’s power transfer efficiency. In practical applications, many hardware issues, such as power transistor shutdown and loss, are the main reasons that affect the inverter conversion efficiency. On the other hand, the working frequency of WPT systems ranges from hundreds of kHz to a few MHz, and traditional voltage and current phasor estimation requires a very high sampling rate which is difficult to achieve. To overcome these limitations, this paper introduces a phase-shifting full bridge inverter using a zero-voltage switching (ZVS) soft switching technology to optimize the conversion efficiency of the inverter. Meanwhile, apparent power is introduced to detect the operating frequency and phase angle. Combined with an FPGA soft switching control strategy, this approach allows for the quick adjustment of the driving pulse of MOS transistors, as well as the voltage and current at the transmitting end, to a completely symmetrical state in real-time, effectively suppressing frequency offset and achieving efficient frequency tracking control and maximum efficiency tracking (MET) control of the WPT system. Through simulation and experiments, the ZVS soft switching technology has been achieved with the inverter control strategy, leading to improved conversion efficiency. The frequency offset that can be corrected can reach 0.1 Hz using the apparent power detection method, and the maximum transfer efficiency of the WPT system can reach 91%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Artificial Intelligence-Based Model for Amyotrophic Lateral Sclerosis Prediction Pulmonary Nodule Detection from 3D CT Image with a Two-Stage Network Real-Time Frequency Adaptive Tracking Control of the WPT System Based on Apparent Power Detection Beyond Words: An Intelligent Human-Machine Dialogue System with Multimodal Generation and Emotional Comprehension A New Pareto Discrete NSGAII Algorithm for Disassembly Line Balance Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1