R.K. Sahu, S. Borthakur, M. Saikia, S. Sarkar, R.S. Ahmed, D. Dasgupta, R. Dhakal, S. Mech, P. Manna, P. Dutta, J. Kalita
{"title":"一种常见的可食用昆虫蛋白水解物通过调节 TLR4/NF- κ β 信号通路来调节 LPS 诱导的氧化应激和炎症反应","authors":"R.K. Sahu, S. Borthakur, M. Saikia, S. Sarkar, R.S. Ahmed, D. Dasgupta, R. Dhakal, S. Mech, P. Manna, P. Dutta, J. Kalita","doi":"10.1163/23524588-00001012","DOIUrl":null,"url":null,"abstract":"Dietary intake of antioxidant and anti-inflammatory-rich foods is a growing approach for fighting inflammation and its associated disorders. Edible insects are gaining popularity as a food source; however, their therapeutic properties, anti-inflammatory activity and their mechanism of action remain largely unexplored. Herein, we evaluate the effectiveness of Antheraea assamensis pupae hydrolysates against oxidative stress and inflammation. The proteins isolated from the pupae were digested with pepsin or pancreatin, or pepsin + pancreatin and passed through a 30 kDa molecular cut-off membrane. The low molecular weight protein hydrolysates were characterised using RP-HPLC, HRMS, XRD, and FTIR-ATR. Hydrolysate from pepsin + pancreatin digestion showed significantly higher DPPH (77.13±2.57%), superoxide (72.08±1.15%) and hydroxyl (56.32±0.90%) radical scavenging activity in a cell-free system. Further, it reduced intercellular ROS production and suppressed the lipopolysaccharide-induced protein expression of TLR4, p-IKKβ, p-NF-, IL-1β, and COX2 in RAW 264.7 macrophages. Furthermore, it inhibited the secretion of pro-inflammatory mediators, including IL-6, IL-1β, and MIP-2. These findings suggest that A. assamensis pupae hydrolysates can be a potential source of bioactive peptides for managing oxidative stress and inflammation.","PeriodicalId":48604,"journal":{"name":"Journal of Insects as Food and Feed","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A common edible insect (Antheraea assamensis) protein hydrolysate regulates LPS-induced oxidative stress and inflammation by modulating the TLR4/NF- κ β Signaling Pathway\",\"authors\":\"R.K. Sahu, S. Borthakur, M. Saikia, S. Sarkar, R.S. Ahmed, D. Dasgupta, R. Dhakal, S. Mech, P. Manna, P. Dutta, J. Kalita\",\"doi\":\"10.1163/23524588-00001012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dietary intake of antioxidant and anti-inflammatory-rich foods is a growing approach for fighting inflammation and its associated disorders. Edible insects are gaining popularity as a food source; however, their therapeutic properties, anti-inflammatory activity and their mechanism of action remain largely unexplored. Herein, we evaluate the effectiveness of Antheraea assamensis pupae hydrolysates against oxidative stress and inflammation. The proteins isolated from the pupae were digested with pepsin or pancreatin, or pepsin + pancreatin and passed through a 30 kDa molecular cut-off membrane. The low molecular weight protein hydrolysates were characterised using RP-HPLC, HRMS, XRD, and FTIR-ATR. Hydrolysate from pepsin + pancreatin digestion showed significantly higher DPPH (77.13±2.57%), superoxide (72.08±1.15%) and hydroxyl (56.32±0.90%) radical scavenging activity in a cell-free system. Further, it reduced intercellular ROS production and suppressed the lipopolysaccharide-induced protein expression of TLR4, p-IKKβ, p-NF-, IL-1β, and COX2 in RAW 264.7 macrophages. Furthermore, it inhibited the secretion of pro-inflammatory mediators, including IL-6, IL-1β, and MIP-2. These findings suggest that A. assamensis pupae hydrolysates can be a potential source of bioactive peptides for managing oxidative stress and inflammation.\",\"PeriodicalId\":48604,\"journal\":{\"name\":\"Journal of Insects as Food and Feed\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insects as Food and Feed\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1163/23524588-00001012\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insects as Food and Feed","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1163/23524588-00001012","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
A common edible insect (Antheraea assamensis) protein hydrolysate regulates LPS-induced oxidative stress and inflammation by modulating the TLR4/NF- κ β Signaling Pathway
Dietary intake of antioxidant and anti-inflammatory-rich foods is a growing approach for fighting inflammation and its associated disorders. Edible insects are gaining popularity as a food source; however, their therapeutic properties, anti-inflammatory activity and their mechanism of action remain largely unexplored. Herein, we evaluate the effectiveness of Antheraea assamensis pupae hydrolysates against oxidative stress and inflammation. The proteins isolated from the pupae were digested with pepsin or pancreatin, or pepsin + pancreatin and passed through a 30 kDa molecular cut-off membrane. The low molecular weight protein hydrolysates were characterised using RP-HPLC, HRMS, XRD, and FTIR-ATR. Hydrolysate from pepsin + pancreatin digestion showed significantly higher DPPH (77.13±2.57%), superoxide (72.08±1.15%) and hydroxyl (56.32±0.90%) radical scavenging activity in a cell-free system. Further, it reduced intercellular ROS production and suppressed the lipopolysaccharide-induced protein expression of TLR4, p-IKKβ, p-NF-, IL-1β, and COX2 in RAW 264.7 macrophages. Furthermore, it inhibited the secretion of pro-inflammatory mediators, including IL-6, IL-1β, and MIP-2. These findings suggest that A. assamensis pupae hydrolysates can be a potential source of bioactive peptides for managing oxidative stress and inflammation.
期刊介绍:
The Journal of Insects as Food and Feed covers edible insects from harvesting in the wild through to industrial scale production. It publishes contributions to understanding the ecology and biology of edible insects and the factors that determine their abundance, the importance of food insects in people’s livelihoods, the value of ethno-entomological knowledge, and the role of technology transfer to assist people to utilise traditional knowledge to improve the value of insect foods in their lives. The journal aims to cover the whole chain of insect collecting or rearing to marketing edible insect products, including the development of sustainable technology, such as automation processes at affordable costs, detection, identification and mitigating of microbial contaminants, development of protocols for quality control, processing methodologies and how they affect digestibility and nutritional composition of insects, and the potential of insects to transform low value organic wastes into high protein products. At the end of the edible insect food or feed chain, marketing issues, consumer acceptance, regulation and legislation pose new research challenges. Food safety and legislation are intimately related. Consumer attitude is strongly dependent on the perceived safety. Microbial safety, toxicity due to chemical contaminants, and allergies are important issues in safety of insects as food and feed. Innovative contributions that address the multitude of aspects relevant for the utilisation of insects in increasing food and feed quality, safety and security are welcomed.