医疗保健模型开发和评估中交叉验证的实际考虑因素和应用实例:教程

JMIR AI Pub Date : 2023-12-18 DOI:10.2196/49023
Drew Wilimitis, Colin G Walsh
{"title":"医疗保健模型开发和评估中交叉验证的实际考虑因素和应用实例:教程","authors":"Drew Wilimitis, Colin G Walsh","doi":"10.2196/49023","DOIUrl":null,"url":null,"abstract":"Cross-validation remains a popular means of developing and validating artificial intelligence for health care. Numerous subtypes of cross-validation exist. Although tutorials on this validation strategy have been published and some with applied examples, we present here a practical tutorial comparing multiple forms of cross-validation using a widely accessible, real-world electronic health care data set: Medical Information Mart for Intensive Care-III (MIMIC-III). This tutorial explored methods such as K-fold cross-validation and nested cross-validation, highlighting their advantages and disadvantages across 2 common predictive modeling use cases: classification (mortality) and regression (length of stay). We aimed to provide readers with reproducible notebooks and best practices for modeling with electronic health care data. We also described sets of useful recommendations as we demonstrated that nested cross-validation reduces optimistic bias but comes with additional computational challenges. This tutorial might improve the community’s understanding of these important methods while catalyzing the modeling community to apply these guides directly in their work using the published code.","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"28 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Considerations and Applied Examples of Cross-Validation for Model Development and Evaluation in Health Care: Tutorial\",\"authors\":\"Drew Wilimitis, Colin G Walsh\",\"doi\":\"10.2196/49023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-validation remains a popular means of developing and validating artificial intelligence for health care. Numerous subtypes of cross-validation exist. Although tutorials on this validation strategy have been published and some with applied examples, we present here a practical tutorial comparing multiple forms of cross-validation using a widely accessible, real-world electronic health care data set: Medical Information Mart for Intensive Care-III (MIMIC-III). This tutorial explored methods such as K-fold cross-validation and nested cross-validation, highlighting their advantages and disadvantages across 2 common predictive modeling use cases: classification (mortality) and regression (length of stay). We aimed to provide readers with reproducible notebooks and best practices for modeling with electronic health care data. We also described sets of useful recommendations as we demonstrated that nested cross-validation reduces optimistic bias but comes with additional computational challenges. This tutorial might improve the community’s understanding of these important methods while catalyzing the modeling community to apply these guides directly in their work using the published code.\",\"PeriodicalId\":73551,\"journal\":{\"name\":\"JMIR AI\",\"volume\":\"28 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/49023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/49023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交叉验证仍然是开发和验证医疗人工智能的常用方法。交叉验证有许多子类型。尽管有关这种验证策略的教程已经出版,其中一些还附有应用实例,但我们在此介绍一种实用的教程,它使用了可广泛访问的真实世界电子医疗数据集,对多种形式的交叉验证进行了比较:重症监护医疗信息市场-III(MIMIC-III)。本教程探讨了 K 折交叉验证和嵌套交叉验证等方法,突出了它们在分类(死亡率)和回归(住院时间)这两种常见预测建模用例中的优缺点。我们的目标是为读者提供可重现的笔记本以及利用电子医疗数据建模的最佳实践。我们还介绍了一些有用的建议,因为我们证明嵌套交叉验证可以减少乐观偏差,但也会带来额外的计算挑战。本教程可能会提高社区对这些重要方法的理解,同时促进建模社区在其工作中使用已发布的代码直接应用这些指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical Considerations and Applied Examples of Cross-Validation for Model Development and Evaluation in Health Care: Tutorial
Cross-validation remains a popular means of developing and validating artificial intelligence for health care. Numerous subtypes of cross-validation exist. Although tutorials on this validation strategy have been published and some with applied examples, we present here a practical tutorial comparing multiple forms of cross-validation using a widely accessible, real-world electronic health care data set: Medical Information Mart for Intensive Care-III (MIMIC-III). This tutorial explored methods such as K-fold cross-validation and nested cross-validation, highlighting their advantages and disadvantages across 2 common predictive modeling use cases: classification (mortality) and regression (length of stay). We aimed to provide readers with reproducible notebooks and best practices for modeling with electronic health care data. We also described sets of useful recommendations as we demonstrated that nested cross-validation reduces optimistic bias but comes with additional computational challenges. This tutorial might improve the community’s understanding of these important methods while catalyzing the modeling community to apply these guides directly in their work using the published code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Privacy-Preserving Health Care Analytics and Implementation of the Personal Health Train: Federated Deep Learning Study. Urgency Prediction for Medical Laboratory Tests Through Optimal Sparse Decision Tree: Case Study With Echocardiograms. Identification of Use Cases, Target Groups, and Motivations Around Adopting Smart Speakers for Health Care and Social Care Settings: Scoping Review. Evaluating ChatGPT's Efficacy in Pediatric Pneumonia Detection From Chest X-Rays: Comparative Analysis of Specialized AI Models. Enhancing Interpretable, Transparent, and Unobtrusive Detection of Acute Marijuana Intoxication in Natural Environments: Harnessing Smart Devices and Explainable AI to Empower Just-In-Time Adaptive Interventions: Longitudinal Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1