超越英语:阿拉伯语语法纠错 LLM 评估

S. Kwon, Gagan Bhatia, El Moatez Billah Nagoudi, M. Abdul-Mageed
{"title":"超越英语:阿拉伯语语法纠错 LLM 评估","authors":"S. Kwon, Gagan Bhatia, El Moatez Billah Nagoudi, M. Abdul-Mageed","doi":"10.18653/v1/2023.arabicnlp-1.9","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) finetuned to follow human instruction have recently exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC), especially on languages other than English, remains significantly unexplored. In this work, we evaluate the abilities of instruction finetuned LLMs in Arabic GEC, a complex task due to Arabic’s rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F1 score under expert prompting (approximately 5 points higher than our established baseline). Despite these positive results, we find that instruction finetuned models, regardless of their size, are still outperformed by fully finetuned ones, even if they are significantly smaller in size. This disparity highlights substantial room for improvements for LLMs. Inspired by methods used in low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our best model achieves a new SOTA on Arabic GEC, with 73.29 and 73.26 F1 on the 2014 and 2015 QALB datasets, respectively, compared to peer-reviewed published baselines.","PeriodicalId":503921,"journal":{"name":"ARABICNLP","volume":"192 1","pages":"101-119"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction\",\"authors\":\"S. Kwon, Gagan Bhatia, El Moatez Billah Nagoudi, M. Abdul-Mageed\",\"doi\":\"10.18653/v1/2023.arabicnlp-1.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) finetuned to follow human instruction have recently exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC), especially on languages other than English, remains significantly unexplored. In this work, we evaluate the abilities of instruction finetuned LLMs in Arabic GEC, a complex task due to Arabic’s rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F1 score under expert prompting (approximately 5 points higher than our established baseline). Despite these positive results, we find that instruction finetuned models, regardless of their size, are still outperformed by fully finetuned ones, even if they are significantly smaller in size. This disparity highlights substantial room for improvements for LLMs. Inspired by methods used in low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our best model achieves a new SOTA on Arabic GEC, with 73.29 and 73.26 F1 on the 2014 and 2015 QALB datasets, respectively, compared to peer-reviewed published baselines.\",\"PeriodicalId\":503921,\"journal\":{\"name\":\"ARABICNLP\",\"volume\":\"192 1\",\"pages\":\"101-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARABICNLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2023.arabicnlp-1.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARABICNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.arabicnlp-1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,根据人类指令微调的大型语言模型(LLMs)在各种英语 NLP 任务中表现出了显著的能力。然而,它们在语法纠错(GEC)中的表现,尤其是在英语以外的语言中的表现,仍有待进一步探索。在这项工作中,我们评估了经过指令微调的 LLMs 在阿拉伯语语法纠错中的能力,由于阿拉伯语丰富的语态,这是一项复杂的任务。我们的研究结果表明,各种提示方法与(语境中的)少量学习相结合,显示出相当大的有效性,在专家提示下,GPT-4 的 F1 得分高达 65.49(比我们设定的基线高出约 5 分)。尽管取得了这些积极成果,但我们发现,经过指令微调的模型,无论其大小如何,其性能仍然优于经过完全微调的模型,即使它们的大小要小得多。这种差异凸显了 LLMs 的巨大改进空间。受低资源机器翻译方法的启发,我们还开发了一种利用合成数据的方法,该方法在两个标准阿拉伯语基准上的表现明显优于以前的模型。我们的最佳模型在阿拉伯语 GEC 上实现了新的 SOTA,在 2014 年和 2015 年 QALB 数据集上的 F1 分别为 73.29 和 73.26,超过了同行评审公布的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction
Large language models (LLMs) finetuned to follow human instruction have recently exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC), especially on languages other than English, remains significantly unexplored. In this work, we evaluate the abilities of instruction finetuned LLMs in Arabic GEC, a complex task due to Arabic’s rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F1 score under expert prompting (approximately 5 points higher than our established baseline). Despite these positive results, we find that instruction finetuned models, regardless of their size, are still outperformed by fully finetuned ones, even if they are significantly smaller in size. This disparity highlights substantial room for improvements for LLMs. Inspired by methods used in low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our best model achieves a new SOTA on Arabic GEC, with 73.29 and 73.26 F1 on the 2014 and 2015 QALB datasets, respectively, compared to peer-reviewed published baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TCE at Qur’an QA 2023 Shared Task: Low Resource Enhanced Transformer-based Ensemble Approach for Qur’anic QA USTHB at NADI 2023 shared task: Exploring Preprocessing and Feature Engineering Strategies for Arabic Dialect Identification Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space - Transformer Ensemble Models Tackling Deception and Persuasion Violet: A Vision-Language Model for Arabic Image Captioning with Gemini Decoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1