用于土木工程结构损伤检测的时间序列分析方法

Burcu Güneş, Oğuz Güneş
{"title":"用于土木工程结构损伤检测的时间序列分析方法","authors":"Burcu Güneş, Oğuz Güneş","doi":"10.24012/dumf.1364693","DOIUrl":null,"url":null,"abstract":"Structural health monitoring (SHM) methodologies employing data-driven techniques are becoming increasingly popular for detection of structural damage at the earliest stage possible. With measured vibration signals from the structure, time series modeling methods provide quantitative means for extracting such features that can be utilized for damage diagnosis. In this study, one-step prediction error of an autoregressive (AR) model over a data set is used as damage indicator. In particular, the difference between the prediction of the AR model that is fit to the measured acceleration signal obtained from the intact structure and actual measured signals collected for different damage states of the structure are interrogated for diagnosis purposes. More specifically, the standard deviation of the residual error is employed to locate the damaged region. Singular-value decomposition (SVD) is employed to find the optimal order for an AR model created using the impulse responses of the system. Numerical simulations are carried out using the impulse responses acquired from a four-story frame structure contaminated with additive noise including single and multiple damaged elements. The results of the simulations demonstrate that the method can be effectively employed to detect and locate damage. The performance of the proposed procedure are further demonstrated using the impact data acquired from a reinforced concrete frame for real applications.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Analysis Methodology for Damage Detection in Civil Structures\",\"authors\":\"Burcu Güneş, Oğuz Güneş\",\"doi\":\"10.24012/dumf.1364693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural health monitoring (SHM) methodologies employing data-driven techniques are becoming increasingly popular for detection of structural damage at the earliest stage possible. With measured vibration signals from the structure, time series modeling methods provide quantitative means for extracting such features that can be utilized for damage diagnosis. In this study, one-step prediction error of an autoregressive (AR) model over a data set is used as damage indicator. In particular, the difference between the prediction of the AR model that is fit to the measured acceleration signal obtained from the intact structure and actual measured signals collected for different damage states of the structure are interrogated for diagnosis purposes. More specifically, the standard deviation of the residual error is employed to locate the damaged region. Singular-value decomposition (SVD) is employed to find the optimal order for an AR model created using the impulse responses of the system. Numerical simulations are carried out using the impulse responses acquired from a four-story frame structure contaminated with additive noise including single and multiple damaged elements. The results of the simulations demonstrate that the method can be effectively employed to detect and locate damage. The performance of the proposed procedure are further demonstrated using the impact data acquired from a reinforced concrete frame for real applications.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1364693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1364693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用数据驱动技术的结构健康监测(SHM)方法在尽早检测结构损坏方面越来越受欢迎。通过测量结构的振动信号,时间序列建模方法为提取可用于损伤诊断的特征提供了定量方法。在本研究中,自回归(AR)模型对数据集的一步预测误差被用作损伤指标。特别是,为了诊断目的,将对从完好结构中获得的加速度测量信号所拟合的 AR 模型预测值与针对结构的不同损坏状态所收集的实际测量信号之间的差异进行询问。更具体地说,利用残余误差的标准偏差来定位受损区域。利用奇异值分解(SVD)为使用系统脉冲响应创建的 AR 模型找到最佳阶数。利用从受单个和多个受损元件的加性噪声污染的四层框架结构中获取的脉冲响应进行了数值模拟。模拟结果表明,该方法可有效用于检测和定位损坏。在实际应用中,利用从钢筋混凝土框架中获取的冲击数据进一步证明了所建议程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time Series Analysis Methodology for Damage Detection in Civil Structures
Structural health monitoring (SHM) methodologies employing data-driven techniques are becoming increasingly popular for detection of structural damage at the earliest stage possible. With measured vibration signals from the structure, time series modeling methods provide quantitative means for extracting such features that can be utilized for damage diagnosis. In this study, one-step prediction error of an autoregressive (AR) model over a data set is used as damage indicator. In particular, the difference between the prediction of the AR model that is fit to the measured acceleration signal obtained from the intact structure and actual measured signals collected for different damage states of the structure are interrogated for diagnosis purposes. More specifically, the standard deviation of the residual error is employed to locate the damaged region. Singular-value decomposition (SVD) is employed to find the optimal order for an AR model created using the impulse responses of the system. Numerical simulations are carried out using the impulse responses acquired from a four-story frame structure contaminated with additive noise including single and multiple damaged elements. The results of the simulations demonstrate that the method can be effectively employed to detect and locate damage. The performance of the proposed procedure are further demonstrated using the impact data acquired from a reinforced concrete frame for real applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1