{"title":"利用卡普托和卡普托-法布里齐奥时间导数对通道中的分化杰弗里流体进行精确分析:比较研究","authors":"Maryam Asgir, M. B. Riaz, Ayesha Islam","doi":"10.2478/ama-2023-0068","DOIUrl":null,"url":null,"abstract":"Abstract The non-integer order derivatives, Caputo (C) and Caputo Fabrizio (CF), were employed to analyse the natural convective flow of magnetohydrodynamic (MHD) Jeffrey fluid. The aim is to generalise the idea of Jeffrey’s fluid flow. The fluid flow is elaborated between two vertical parallel plates. One plate is kept fixed while the other is moving with the velocity U0f(t), which induces the motion in the fluid. The fluid flow problem is modelled in terms of the partial differential equation along with generalised physical conditions. The appropriate parameters are introduced to the dimensionless system of equations. To obtain the solutions, the Laplace transform (LT) is operated on the fractional system of equations, and the results are presented in series form. The pertinent parameter’s influence on the fluid flow is brought under consideration to reveal interesting results. In comparison, we noticed that the C approach shows better results than CF, and graphs are drawn to show the results. The results for ordinary Jeffrey fluid, second-grade and viscous fluid are obtained in a limiting sense.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Analysis of Fractionalised Jeffrey Fluid in a Channel with Caputo and Caputo Fabrizio Time Derivative: A Comparative Study\",\"authors\":\"Maryam Asgir, M. B. Riaz, Ayesha Islam\",\"doi\":\"10.2478/ama-2023-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The non-integer order derivatives, Caputo (C) and Caputo Fabrizio (CF), were employed to analyse the natural convective flow of magnetohydrodynamic (MHD) Jeffrey fluid. The aim is to generalise the idea of Jeffrey’s fluid flow. The fluid flow is elaborated between two vertical parallel plates. One plate is kept fixed while the other is moving with the velocity U0f(t), which induces the motion in the fluid. The fluid flow problem is modelled in terms of the partial differential equation along with generalised physical conditions. The appropriate parameters are introduced to the dimensionless system of equations. To obtain the solutions, the Laplace transform (LT) is operated on the fractional system of equations, and the results are presented in series form. The pertinent parameter’s influence on the fluid flow is brought under consideration to reveal interesting results. In comparison, we noticed that the C approach shows better results than CF, and graphs are drawn to show the results. The results for ordinary Jeffrey fluid, second-grade and viscous fluid are obtained in a limiting sense.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ama-2023-0068\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0068","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exact Analysis of Fractionalised Jeffrey Fluid in a Channel with Caputo and Caputo Fabrizio Time Derivative: A Comparative Study
Abstract The non-integer order derivatives, Caputo (C) and Caputo Fabrizio (CF), were employed to analyse the natural convective flow of magnetohydrodynamic (MHD) Jeffrey fluid. The aim is to generalise the idea of Jeffrey’s fluid flow. The fluid flow is elaborated between two vertical parallel plates. One plate is kept fixed while the other is moving with the velocity U0f(t), which induces the motion in the fluid. The fluid flow problem is modelled in terms of the partial differential equation along with generalised physical conditions. The appropriate parameters are introduced to the dimensionless system of equations. To obtain the solutions, the Laplace transform (LT) is operated on the fractional system of equations, and the results are presented in series form. The pertinent parameter’s influence on the fluid flow is brought under consideration to reveal interesting results. In comparison, we noticed that the C approach shows better results than CF, and graphs are drawn to show the results. The results for ordinary Jeffrey fluid, second-grade and viscous fluid are obtained in a limiting sense.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.