利用知识推理进行卷积降维,实现高维空间不确定性下的结构可靠性逼近

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Mechanical Design Pub Date : 2023-11-30 DOI:10.1115/1.4064159
Luojie Shi, Zhou Kai, Zequn Wang
{"title":"利用知识推理进行卷积降维,实现高维空间不确定性下的结构可靠性逼近","authors":"Luojie Shi, Zhou Kai, Zequn Wang","doi":"10.1115/1.4064159","DOIUrl":null,"url":null,"abstract":"Along with the rapid advancement of additive manufacturing technology, 3D-printed structures and materials have been popularly employed in diverse applications. Computer simulations of these structures and materials are often characterized by a vast number of spatial-varied parameters to predict the structural response of interest. Direct Monte Carlo methods are infeasible for the uncertainty quantification and reliability assessment of such systems as they require a huge number of forward model evaluations in order to obtain convergent statistics. To alleviate this difficulty, this paper presents a convolutional dimension-reduction network with knowledge reasoning-based loss regularization as explainable deep learning framework for surrogate modeling and uncertainty quantification of structures with high-dimensional spatial variations. To manage the inherent high-dimensionality, a deep Convolutional Dimension-Reduction network (ConvDR) is constructed to transform the spatial data into a low-dimensional latent space. In the latent space, domain knowledge is formulated as a form of loss regularization to train the ConvDR network as a surrogate model to predict the response of interest. Then evolutionary algorithms are utilized to train the deep convolutional dimension-reduction network. Two 2D structures with manufacturing-induced spatial-variated material compositions are used to demonstrate the performance of the proposed approach.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"1905 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Dimension-Reduction with Knowledge Reasoning for Reliability Approximations of Structures under High-Dimensional Spatial Uncertainties\",\"authors\":\"Luojie Shi, Zhou Kai, Zequn Wang\",\"doi\":\"10.1115/1.4064159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with the rapid advancement of additive manufacturing technology, 3D-printed structures and materials have been popularly employed in diverse applications. Computer simulations of these structures and materials are often characterized by a vast number of spatial-varied parameters to predict the structural response of interest. Direct Monte Carlo methods are infeasible for the uncertainty quantification and reliability assessment of such systems as they require a huge number of forward model evaluations in order to obtain convergent statistics. To alleviate this difficulty, this paper presents a convolutional dimension-reduction network with knowledge reasoning-based loss regularization as explainable deep learning framework for surrogate modeling and uncertainty quantification of structures with high-dimensional spatial variations. To manage the inherent high-dimensionality, a deep Convolutional Dimension-Reduction network (ConvDR) is constructed to transform the spatial data into a low-dimensional latent space. In the latent space, domain knowledge is formulated as a form of loss regularization to train the ConvDR network as a surrogate model to predict the response of interest. Then evolutionary algorithms are utilized to train the deep convolutional dimension-reduction network. Two 2D structures with manufacturing-induced spatial-variated material compositions are used to demonstrate the performance of the proposed approach.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"1905 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064159\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064159","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着增材制造技术的快速发展,三维打印结构和材料已被广泛应用于各种领域。对这些结构和材料进行计算机模拟时,通常需要使用大量空间变化参数来预测相关结构响应。直接采用蒙特卡罗方法对这类系统进行不确定性量化和可靠性评估是不可行的,因为它们需要大量的前向模型评估才能获得收敛统计量。为了缓解这一困难,本文提出了一种卷积降维网络,并将基于知识推理的损失正则化作为可解释的深度学习框架,用于具有高维空间变化的结构的代用建模和不确定性量化。为了管理固有的高维性,我们构建了一个深度卷积降维网络(ConvDR),将空间数据转化为低维潜在空间。在潜空间中,将领域知识作为一种损失正则化形式来训练 ConvDR 网络,使其成为预测相关响应的代理模型。然后利用进化算法来训练深度卷积降维网络。两个二维结构具有制造引起的空间变异材料成分,用于演示所建议方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional Dimension-Reduction with Knowledge Reasoning for Reliability Approximations of Structures under High-Dimensional Spatial Uncertainties
Along with the rapid advancement of additive manufacturing technology, 3D-printed structures and materials have been popularly employed in diverse applications. Computer simulations of these structures and materials are often characterized by a vast number of spatial-varied parameters to predict the structural response of interest. Direct Monte Carlo methods are infeasible for the uncertainty quantification and reliability assessment of such systems as they require a huge number of forward model evaluations in order to obtain convergent statistics. To alleviate this difficulty, this paper presents a convolutional dimension-reduction network with knowledge reasoning-based loss regularization as explainable deep learning framework for surrogate modeling and uncertainty quantification of structures with high-dimensional spatial variations. To manage the inherent high-dimensionality, a deep Convolutional Dimension-Reduction network (ConvDR) is constructed to transform the spatial data into a low-dimensional latent space. In the latent space, domain knowledge is formulated as a form of loss regularization to train the ConvDR network as a surrogate model to predict the response of interest. Then evolutionary algorithms are utilized to train the deep convolutional dimension-reduction network. Two 2D structures with manufacturing-induced spatial-variated material compositions are used to demonstrate the performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Design
Journal of Mechanical Design 工程技术-工程:机械
CiteScore
8.00
自引率
18.20%
发文量
139
审稿时长
3.9 months
期刊介绍: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials. Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
期刊最新文献
Joint Special Issue on Advances in Design and Manufacturing for Sustainability Optimization of Tooth Profile Modification Amount and Manufacturing Tolerance Allocation for RV Reducer under Reliability Constraint Critical thinking assessment in engineering education: A Scopus-based literature review Accounting for Machine Learning Prediction Errors in Design Thinking Beyond the Default User: The Impact of Gender, Stereotypes, and Modality on Interpretation of User Needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1