{"title":"利用知识推理进行卷积降维,实现高维空间不确定性下的结构可靠性逼近","authors":"Luojie Shi, Zhou Kai, Zequn Wang","doi":"10.1115/1.4064159","DOIUrl":null,"url":null,"abstract":"Along with the rapid advancement of additive manufacturing technology, 3D-printed structures and materials have been popularly employed in diverse applications. Computer simulations of these structures and materials are often characterized by a vast number of spatial-varied parameters to predict the structural response of interest. Direct Monte Carlo methods are infeasible for the uncertainty quantification and reliability assessment of such systems as they require a huge number of forward model evaluations in order to obtain convergent statistics. To alleviate this difficulty, this paper presents a convolutional dimension-reduction network with knowledge reasoning-based loss regularization as explainable deep learning framework for surrogate modeling and uncertainty quantification of structures with high-dimensional spatial variations. To manage the inherent high-dimensionality, a deep Convolutional Dimension-Reduction network (ConvDR) is constructed to transform the spatial data into a low-dimensional latent space. In the latent space, domain knowledge is formulated as a form of loss regularization to train the ConvDR network as a surrogate model to predict the response of interest. Then evolutionary algorithms are utilized to train the deep convolutional dimension-reduction network. Two 2D structures with manufacturing-induced spatial-variated material compositions are used to demonstrate the performance of the proposed approach.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"1905 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Dimension-Reduction with Knowledge Reasoning for Reliability Approximations of Structures under High-Dimensional Spatial Uncertainties\",\"authors\":\"Luojie Shi, Zhou Kai, Zequn Wang\",\"doi\":\"10.1115/1.4064159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with the rapid advancement of additive manufacturing technology, 3D-printed structures and materials have been popularly employed in diverse applications. Computer simulations of these structures and materials are often characterized by a vast number of spatial-varied parameters to predict the structural response of interest. Direct Monte Carlo methods are infeasible for the uncertainty quantification and reliability assessment of such systems as they require a huge number of forward model evaluations in order to obtain convergent statistics. To alleviate this difficulty, this paper presents a convolutional dimension-reduction network with knowledge reasoning-based loss regularization as explainable deep learning framework for surrogate modeling and uncertainty quantification of structures with high-dimensional spatial variations. To manage the inherent high-dimensionality, a deep Convolutional Dimension-Reduction network (ConvDR) is constructed to transform the spatial data into a low-dimensional latent space. In the latent space, domain knowledge is formulated as a form of loss regularization to train the ConvDR network as a surrogate model to predict the response of interest. Then evolutionary algorithms are utilized to train the deep convolutional dimension-reduction network. Two 2D structures with manufacturing-induced spatial-variated material compositions are used to demonstrate the performance of the proposed approach.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"1905 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064159\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064159","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Convolutional Dimension-Reduction with Knowledge Reasoning for Reliability Approximations of Structures under High-Dimensional Spatial Uncertainties
Along with the rapid advancement of additive manufacturing technology, 3D-printed structures and materials have been popularly employed in diverse applications. Computer simulations of these structures and materials are often characterized by a vast number of spatial-varied parameters to predict the structural response of interest. Direct Monte Carlo methods are infeasible for the uncertainty quantification and reliability assessment of such systems as they require a huge number of forward model evaluations in order to obtain convergent statistics. To alleviate this difficulty, this paper presents a convolutional dimension-reduction network with knowledge reasoning-based loss regularization as explainable deep learning framework for surrogate modeling and uncertainty quantification of structures with high-dimensional spatial variations. To manage the inherent high-dimensionality, a deep Convolutional Dimension-Reduction network (ConvDR) is constructed to transform the spatial data into a low-dimensional latent space. In the latent space, domain knowledge is formulated as a form of loss regularization to train the ConvDR network as a surrogate model to predict the response of interest. Then evolutionary algorithms are utilized to train the deep convolutional dimension-reduction network. Two 2D structures with manufacturing-induced spatial-variated material compositions are used to demonstrate the performance of the proposed approach.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.