ArAIEval 上的特立独行者共同任务:迈向更安全的数字空间--处理欺骗和劝诱问题的变换器集合模型

Sudeep Mangalvedhekar, Kshitij Deshpande, Yash Patwardhan, Vedant Deshpande, Ravindra Murumkar
{"title":"ArAIEval 上的特立独行者共同任务:迈向更安全的数字空间--处理欺骗和劝诱问题的变换器集合模型","authors":"Sudeep Mangalvedhekar, Kshitij Deshpande, Yash Patwardhan, Vedant Deshpande, Ravindra Murumkar","doi":"10.48550/arXiv.2311.18730","DOIUrl":null,"url":null,"abstract":"In this paper, we highlight our approach for the “Arabic AI Tasks Evaluation (ArAiEval) Shared Task 2023”. We present our approaches for task 1-A and task 2-A of the shared task which focus on persuasion technique detection and disinformation detection respectively. Detection of persuasion techniques and disinformation has become imperative to avoid distortion of authentic information. The tasks use multigenre snippets of tweets and news articles for the given binary classification problem. We experiment with several transformer-based models that were pre-trained on the Arabic language. We fine-tune these state-of-the-art models on the provided dataset. Ensembling is employed to enhance the performance of the systems. We achieved a micro F1-score of 0.742 on task 1-A (8th rank on the leaderboard) and 0.901 on task 2-A (7th rank on the leaderboard) respectively.","PeriodicalId":503921,"journal":{"name":"ARABICNLP","volume":"14 1","pages":"513-518"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space - Transformer Ensemble Models Tackling Deception and Persuasion\",\"authors\":\"Sudeep Mangalvedhekar, Kshitij Deshpande, Yash Patwardhan, Vedant Deshpande, Ravindra Murumkar\",\"doi\":\"10.48550/arXiv.2311.18730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we highlight our approach for the “Arabic AI Tasks Evaluation (ArAiEval) Shared Task 2023”. We present our approaches for task 1-A and task 2-A of the shared task which focus on persuasion technique detection and disinformation detection respectively. Detection of persuasion techniques and disinformation has become imperative to avoid distortion of authentic information. The tasks use multigenre snippets of tweets and news articles for the given binary classification problem. We experiment with several transformer-based models that were pre-trained on the Arabic language. We fine-tune these state-of-the-art models on the provided dataset. Ensembling is employed to enhance the performance of the systems. We achieved a micro F1-score of 0.742 on task 1-A (8th rank on the leaderboard) and 0.901 on task 2-A (7th rank on the leaderboard) respectively.\",\"PeriodicalId\":503921,\"journal\":{\"name\":\"ARABICNLP\",\"volume\":\"14 1\",\"pages\":\"513-518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARABICNLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2311.18730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARABICNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2311.18730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重点介绍了我们针对 "阿拉伯语人工智能任务评估(ArAiEval)2023 共享任务 "所采用的方法。我们介绍了针对任务 1-A 和任务 2-A 的方法,这两个任务分别侧重于说服技术检测和虚假信息检测。为避免真实信息失真,检测劝诱技术和虚假信息已成为当务之急。这些任务使用推文和新闻文章的多源片段来解决给定的二元分类问题。我们试验了几种基于转换器的模型,这些模型已在阿拉伯语中进行了预先训练。我们在提供的数据集上对这些最先进的模型进行了微调。为了提高系统的性能,我们采用了集合的方法。我们在任务 1-A 和任务 2-A 上分别取得了 0.742(排行榜第 8 位)和 0.901(排行榜第 7 位)的微型 F1 分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space - Transformer Ensemble Models Tackling Deception and Persuasion
In this paper, we highlight our approach for the “Arabic AI Tasks Evaluation (ArAiEval) Shared Task 2023”. We present our approaches for task 1-A and task 2-A of the shared task which focus on persuasion technique detection and disinformation detection respectively. Detection of persuasion techniques and disinformation has become imperative to avoid distortion of authentic information. The tasks use multigenre snippets of tweets and news articles for the given binary classification problem. We experiment with several transformer-based models that were pre-trained on the Arabic language. We fine-tune these state-of-the-art models on the provided dataset. Ensembling is employed to enhance the performance of the systems. We achieved a micro F1-score of 0.742 on task 1-A (8th rank on the leaderboard) and 0.901 on task 2-A (7th rank on the leaderboard) respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TCE at Qur’an QA 2023 Shared Task: Low Resource Enhanced Transformer-based Ensemble Approach for Qur’anic QA USTHB at NADI 2023 shared task: Exploring Preprocessing and Feature Engineering Strategies for Arabic Dialect Identification Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space - Transformer Ensemble Models Tackling Deception and Persuasion Violet: A Vision-Language Model for Arabic Image Captioning with Gemini Decoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1