基于位交换的可逆逻辑电路的可测试性设计

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2023-11-30 DOI:10.1049/qtc2.12077
Joyati Mondal, Debesh Kumar Das, Bhargab B. Bhattacharya
{"title":"基于位交换的可逆逻辑电路的可测试性设计","authors":"Joyati Mondal,&nbsp;Debesh Kumar Das,&nbsp;Bhargab B. Bhattacharya","doi":"10.1049/qtc2.12077","DOIUrl":null,"url":null,"abstract":"<p>The emerging technology of reversible circuits offers a potential solution to the synthesis of ultra low-power quantum computing systems. A reversible circuit can be envisaged as a cascade of reversible gates only, such as Toffoli gate, which has two components: <i>k</i> control bits and a target bit (<i>k</i>-CNOT), <i>k</i> ≥ 1. While analysing testability issues in a reversible circuit, the missing-gate fault model is often used for modelling physical defects in <i>k</i>-CNOT gates. A new design-for-testability (DFT) technique is proposed for reversible circuits that deploys bit-swapping using Fredkin reversible gates. It is shown that in an (<i>n</i> × <i>n</i>) circuit implemented with <i>k</i>-CNOT gates, addition of only two extra inputs along with a few Fredkin gates yields easy testability in the circuit. The modified design admits a universal test set of maximum size 2<i>n</i> + 1 that detects all detectable missing gate faults in the original circuit, where <i>n</i> is the number of input/output lines in the circuit. The DFT overhead in terms of quantum cost is much less compared to that of previous approaches. The method is more advantageous for large circuits.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 2","pages":"113-122"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12077","citationCount":"0","resultStr":"{\"title\":\"Design-for-testability for reversible logic circuits based on bit-swapping\",\"authors\":\"Joyati Mondal,&nbsp;Debesh Kumar Das,&nbsp;Bhargab B. Bhattacharya\",\"doi\":\"10.1049/qtc2.12077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emerging technology of reversible circuits offers a potential solution to the synthesis of ultra low-power quantum computing systems. A reversible circuit can be envisaged as a cascade of reversible gates only, such as Toffoli gate, which has two components: <i>k</i> control bits and a target bit (<i>k</i>-CNOT), <i>k</i> ≥ 1. While analysing testability issues in a reversible circuit, the missing-gate fault model is often used for modelling physical defects in <i>k</i>-CNOT gates. A new design-for-testability (DFT) technique is proposed for reversible circuits that deploys bit-swapping using Fredkin reversible gates. It is shown that in an (<i>n</i> × <i>n</i>) circuit implemented with <i>k</i>-CNOT gates, addition of only two extra inputs along with a few Fredkin gates yields easy testability in the circuit. The modified design admits a universal test set of maximum size 2<i>n</i> + 1 that detects all detectable missing gate faults in the original circuit, where <i>n</i> is the number of input/output lines in the circuit. The DFT overhead in terms of quantum cost is much less compared to that of previous approaches. The method is more advantageous for large circuits.</p>\",\"PeriodicalId\":100651,\"journal\":{\"name\":\"IET Quantum Communication\",\"volume\":\"5 2\",\"pages\":\"113-122\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12077\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Quantum Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新兴的可逆电路技术为合成超低功耗量子计算系统提供了潜在的解决方案。可逆电路可以设想为仅由可逆门(如托福利门)组成的级联,它有两个组成部分:k 个控制位和一个目标位(k-CNOT),k ≥ 1。在分析可逆电路的可测试性问题时,通常使用缺失门故障模型来模拟 k-CNOT 门的物理缺陷。本文针对可逆电路提出了一种新的可测试性设计(DFT)技术,即利用弗雷德金可逆门进行位交换。研究表明,在使用 k-CNOT 门实现的 (n × n) 电路中,只需增加两个额外的输入和几个弗雷德金门,就能轻松实现电路的可测试性。修改后的设计允许最大大小为 2n + 1 的通用测试集,它能检测出原始电路中所有可检测的缺失门故障,其中 n 是电路中输入/输出线的数量。与之前的方法相比,DFT 在量子成本方面的开销要小得多。这种方法对大型电路更有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design-for-testability for reversible logic circuits based on bit-swapping

The emerging technology of reversible circuits offers a potential solution to the synthesis of ultra low-power quantum computing systems. A reversible circuit can be envisaged as a cascade of reversible gates only, such as Toffoli gate, which has two components: k control bits and a target bit (k-CNOT), k ≥ 1. While analysing testability issues in a reversible circuit, the missing-gate fault model is often used for modelling physical defects in k-CNOT gates. A new design-for-testability (DFT) technique is proposed for reversible circuits that deploys bit-swapping using Fredkin reversible gates. It is shown that in an (n × n) circuit implemented with k-CNOT gates, addition of only two extra inputs along with a few Fredkin gates yields easy testability in the circuit. The modified design admits a universal test set of maximum size 2n + 1 that detects all detectable missing gate faults in the original circuit, where n is the number of input/output lines in the circuit. The DFT overhead in terms of quantum cost is much less compared to that of previous approaches. The method is more advantageous for large circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Quantum teleportation in higher dimension and entanglement distribution via quantum switches Real-time seedless post-processing for quantum random number generators Quantum blockchain: Trends, technologies, and future directions Quantum anonymous one vote veto protocol based on entanglement swapping Enhanced QSVM with elitist non-dominated sorting genetic optimisation algorithm for breast cancer diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1