{"title":"用于交通数据预测的自适应时空联合图学习网络","authors":"Tianyi Wang, Shu-Ching Chen","doi":"10.1145/3634913","DOIUrl":null,"url":null,"abstract":"Traffic data forecasting has become an integral part of the intelligent traffic system. Great efforts are spent developing tools and techniques to estimate traffic flow patterns. Many existing approaches lack the ability to model the complex and dynamic spatio-temporal relations in the traffic data, which are crucial in capturing the traffic dynamic. In this work, we propose a novel adaptive joint spatio-temporal graph learning network (AJSTGL) for traffic data forecasting. The proposed model utilizes static and adaptive graph learning modules to capture the static and dynamic spatial traffic patterns and optimize the graph learning process. A sequence-to-sequence fusion model is proposed to learn the temporal correlation and combine the output of multiple parallelized encoders. We also develop a spatio-temporal graph transformer module to complement the sequence-to-sequence fusion module by dynamically capturing the time-evolving node relations in long-term intervals. Experiments on three large-scale traffic flow datasets demonstrate that our model could outperform other state-of-the-art baseline methods.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Joint Spatio-Temporal Graph Learning Network for Traffic Data Forecasting\",\"authors\":\"Tianyi Wang, Shu-Ching Chen\",\"doi\":\"10.1145/3634913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic data forecasting has become an integral part of the intelligent traffic system. Great efforts are spent developing tools and techniques to estimate traffic flow patterns. Many existing approaches lack the ability to model the complex and dynamic spatio-temporal relations in the traffic data, which are crucial in capturing the traffic dynamic. In this work, we propose a novel adaptive joint spatio-temporal graph learning network (AJSTGL) for traffic data forecasting. The proposed model utilizes static and adaptive graph learning modules to capture the static and dynamic spatial traffic patterns and optimize the graph learning process. A sequence-to-sequence fusion model is proposed to learn the temporal correlation and combine the output of multiple parallelized encoders. We also develop a spatio-temporal graph transformer module to complement the sequence-to-sequence fusion module by dynamically capturing the time-evolving node relations in long-term intervals. Experiments on three large-scale traffic flow datasets demonstrate that our model could outperform other state-of-the-art baseline methods.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3634913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3634913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Adaptive Joint Spatio-Temporal Graph Learning Network for Traffic Data Forecasting
Traffic data forecasting has become an integral part of the intelligent traffic system. Great efforts are spent developing tools and techniques to estimate traffic flow patterns. Many existing approaches lack the ability to model the complex and dynamic spatio-temporal relations in the traffic data, which are crucial in capturing the traffic dynamic. In this work, we propose a novel adaptive joint spatio-temporal graph learning network (AJSTGL) for traffic data forecasting. The proposed model utilizes static and adaptive graph learning modules to capture the static and dynamic spatial traffic patterns and optimize the graph learning process. A sequence-to-sequence fusion model is proposed to learn the temporal correlation and combine the output of multiple parallelized encoders. We also develop a spatio-temporal graph transformer module to complement the sequence-to-sequence fusion module by dynamically capturing the time-evolving node relations in long-term intervals. Experiments on three large-scale traffic flow datasets demonstrate that our model could outperform other state-of-the-art baseline methods.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.