用于交通数据预测的自适应时空联合图学习网络

IF 1.2 Q4 REMOTE SENSING ACM Transactions on Spatial Algorithms and Systems Pub Date : 2023-11-28 DOI:10.1145/3634913
Tianyi Wang, Shu-Ching Chen
{"title":"用于交通数据预测的自适应时空联合图学习网络","authors":"Tianyi Wang, Shu-Ching Chen","doi":"10.1145/3634913","DOIUrl":null,"url":null,"abstract":"Traffic data forecasting has become an integral part of the intelligent traffic system. Great efforts are spent developing tools and techniques to estimate traffic flow patterns. Many existing approaches lack the ability to model the complex and dynamic spatio-temporal relations in the traffic data, which are crucial in capturing the traffic dynamic. In this work, we propose a novel adaptive joint spatio-temporal graph learning network (AJSTGL) for traffic data forecasting. The proposed model utilizes static and adaptive graph learning modules to capture the static and dynamic spatial traffic patterns and optimize the graph learning process. A sequence-to-sequence fusion model is proposed to learn the temporal correlation and combine the output of multiple parallelized encoders. We also develop a spatio-temporal graph transformer module to complement the sequence-to-sequence fusion module by dynamically capturing the time-evolving node relations in long-term intervals. Experiments on three large-scale traffic flow datasets demonstrate that our model could outperform other state-of-the-art baseline methods.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Joint Spatio-Temporal Graph Learning Network for Traffic Data Forecasting\",\"authors\":\"Tianyi Wang, Shu-Ching Chen\",\"doi\":\"10.1145/3634913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic data forecasting has become an integral part of the intelligent traffic system. Great efforts are spent developing tools and techniques to estimate traffic flow patterns. Many existing approaches lack the ability to model the complex and dynamic spatio-temporal relations in the traffic data, which are crucial in capturing the traffic dynamic. In this work, we propose a novel adaptive joint spatio-temporal graph learning network (AJSTGL) for traffic data forecasting. The proposed model utilizes static and adaptive graph learning modules to capture the static and dynamic spatial traffic patterns and optimize the graph learning process. A sequence-to-sequence fusion model is proposed to learn the temporal correlation and combine the output of multiple parallelized encoders. We also develop a spatio-temporal graph transformer module to complement the sequence-to-sequence fusion module by dynamically capturing the time-evolving node relations in long-term intervals. Experiments on three large-scale traffic flow datasets demonstrate that our model could outperform other state-of-the-art baseline methods.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3634913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3634913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

交通数据预测已成为智能交通系统不可或缺的一部分。人们花费了大量精力来开发估算交通流模式的工具和技术。许多现有方法缺乏对交通数据中复杂动态的时空关系建模的能力,而时空关系对于捕捉交通动态至关重要。在这项工作中,我们提出了一种用于交通数据预测的新型自适应时空联合图学习网络(AJSTGL)。该模型利用静态和自适应图学习模块来捕捉静态和动态空间交通模式,并优化图学习过程。我们提出了一个序列到序列融合模型来学习时间相关性,并结合多个并行编码器的输出。我们还开发了一个时空图转换器模块,通过动态捕捉长期时间间隔内不断变化的节点关系来补充序列到序列融合模块。在三个大规模交通流数据集上的实验证明,我们的模型优于其他最先进的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Joint Spatio-Temporal Graph Learning Network for Traffic Data Forecasting
Traffic data forecasting has become an integral part of the intelligent traffic system. Great efforts are spent developing tools and techniques to estimate traffic flow patterns. Many existing approaches lack the ability to model the complex and dynamic spatio-temporal relations in the traffic data, which are crucial in capturing the traffic dynamic. In this work, we propose a novel adaptive joint spatio-temporal graph learning network (AJSTGL) for traffic data forecasting. The proposed model utilizes static and adaptive graph learning modules to capture the static and dynamic spatial traffic patterns and optimize the graph learning process. A sequence-to-sequence fusion model is proposed to learn the temporal correlation and combine the output of multiple parallelized encoders. We also develop a spatio-temporal graph transformer module to complement the sequence-to-sequence fusion module by dynamically capturing the time-evolving node relations in long-term intervals. Experiments on three large-scale traffic flow datasets demonstrate that our model could outperform other state-of-the-art baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
期刊最新文献
Cross- and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction (Vision Paper) A Vision for Spatio-Causal Situation Awareness, Forecasting, and Planning Mobility Data Science: Perspectives and Challenges Graph Sampling for Map Comparison Latent Representation Learning for Geospatial Entities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1