首页 > 最新文献

ACM Transactions on Spatial Algorithms and Systems最新文献

英文 中文
Cross- and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction 基于注意力的跨时空图卷积网络用于人类移动性预测
IF 1.9 Q1 Mathematics Pub Date : 2024-06-14 DOI: 10.1145/3673227
Zhaobin Mo, Haotian Xiang, Xuan Di
The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility prediction for the “new normal” is crucial to infrastructure redesign, emergency management, and urban planning post the pandemic. This paper aims to predict people’s number of visits to various locations in New York City using COVID and mobility data in the past two years. To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns across the pandemic period, this paper develops a model CCAAT-GCN (Cross- and Context-Attention based Spatial-Temporal Graph Convolutional Networks). The proposed model is validated using SafeGraph data in New York City from August 2020 to April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model. Results demonstrate the superior performance of our proposed method. Also, the attention matrix learned by our model exhibits a strong alignment with the COVID-19 situation and the points of interest within the geographic region. This alignment suggests that the model effectively captures the intricate relationships between COVID-19 case rates and human mobility patterns. The developed model and findings can offer insights into the mobility pattern prediction for future disruptive events and pandemics, so as to assist with emergency preparedness for planners, decision-makers and policymakers.
COVID-19 大流行极大地改变了人类的流动模式。因此,针对 "新常态 "的人员流动预测对于大流行后的基础设施重新设计、应急管理和城市规划至关重要。本文旨在利用 COVID 和过去两年的流动数据,预测人们访问纽约市不同地点的次数。为了对 COVID 病例对人员流动模式的影响进行定量建模,并预测整个大流行期间的人员流动模式,本文开发了一个模型 CCAAT-GCN(基于交叉和上下文注意力的时空图卷积网络)。利用 2020 年 8 月至 2022 年 4 月期间纽约市的 SafeGraph 数据对所提出的模型进行了验证。为了证明我们提出的模型的性能,还进行了一系列丰富的基线测试。结果表明,我们提出的方法性能优越。此外,我们的模型学习到的注意力矩阵与 COVID-19 的情况和地理区域内的兴趣点非常吻合。这种一致性表明,该模型有效地捕捉到了 COVID-19 病例率与人类流动模式之间错综复杂的关系。所开发的模型和研究结果可为未来破坏性事件和流行病的流动模式预测提供见解,从而帮助规划者、决策者和政策制定者做好应急准备。
{"title":"Cross- and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction","authors":"Zhaobin Mo, Haotian Xiang, Xuan Di","doi":"10.1145/3673227","DOIUrl":"https://doi.org/10.1145/3673227","url":null,"abstract":"The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility prediction for the “new normal” is crucial to infrastructure redesign, emergency management, and urban planning post the pandemic. This paper aims to predict people’s number of visits to various locations in New York City using COVID and mobility data in the past two years. To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns across the pandemic period, this paper develops a model CCAAT-GCN (Cross- and Context-Attention based Spatial-Temporal Graph Convolutional Networks). The proposed model is validated using SafeGraph data in New York City from August 2020 to April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model. Results demonstrate the superior performance of our proposed method. Also, the attention matrix learned by our model exhibits a strong alignment with the COVID-19 situation and the points of interest within the geographic region. This alignment suggests that the model effectively captures the intricate relationships between COVID-19 case rates and human mobility patterns. The developed model and findings can offer insights into the mobility pattern prediction for future disruptive events and pandemics, so as to assist with emergency preparedness for planners, decision-makers and policymakers.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141340649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Vision Paper) A Vision for Spatio-Causal Situation Awareness, Forecasting, and Planning (愿景文件)空间因果态势感知、预测和规划愿景
IF 1.9 Q1 Mathematics Pub Date : 2024-06-12 DOI: 10.1145/3672556
Fahim Tasneema Azad, K. Candan, Ahmet Kapkic, Mao-Lin Li, Huan Liu, Pratanu Mandal, Paras Sheth, Bilgehan Arslan, Gerardo Chowell-Puente, John Sabo, R. Muenich, Javier Redondo Anton, M. Sapino
Successfully tackling many urgent challenges in socio-economically critical domains, such as public health and sustainability, requires a deeper understanding of causal relationships and interactions among a diverse spectrum of spatio-temporally distributed entities. In these applications, the ability to leverage spatio-temporal data to obtain causally-based situational awareness and to develop informed forecasts to provide resilience at different scales is critical. While the promise of a causally-grounded approach to these challenges is apparent, the core data technologies needed to achieve these are in the early stages and lack a framework to help realize their potential. In this paper, we argue that there is an urgent need for a novel paradigm of spatio-causal research built on computational advances in, spatio-temporal data and model integration, causal learning and discovery, large scale data- and model-driven simulations, emulations, and forecasting, spatio-temporal data-driven and model centric operational recommendations, and effective causally-driven visualization and explanation. We, thus, provide a vision, and a road-map, for spatio-causal situation awareness, forecasting, and planning.
要成功应对公共卫生和可持续性等社会经济关键领域的许多紧迫挑战,就必须深入了解各种时空分布实体之间的因果关系和相互作用。在这些应用中,利用时空数据获得基于因果关系的态势感知并进行知情预测以提供不同规模的复原力的能力至关重要。虽然以因果关系为基础的方法在应对这些挑战方面大有可为,但实现这些目标所需的核心数据技术仍处于早期阶段,缺乏有助于实现其潜力的框架。在本文中,我们认为迫切需要一种新的时空因果研究范式,这种范式建立在以下方面的计算进步之上:时空数据和模型整合、因果学习和发现、大规模数据和模型驱动的模拟、仿真和预测、时空数据驱动和以模型为中心的操作建议,以及有效的因果驱动可视化和解释。因此,我们为时空因果态势感知、预测和规划提供了愿景和路线图。
{"title":"(Vision Paper) A Vision for Spatio-Causal Situation Awareness, Forecasting, and Planning","authors":"Fahim Tasneema Azad, K. Candan, Ahmet Kapkic, Mao-Lin Li, Huan Liu, Pratanu Mandal, Paras Sheth, Bilgehan Arslan, Gerardo Chowell-Puente, John Sabo, R. Muenich, Javier Redondo Anton, M. Sapino","doi":"10.1145/3672556","DOIUrl":"https://doi.org/10.1145/3672556","url":null,"abstract":"Successfully tackling many urgent challenges in socio-economically critical domains, such as public health and sustainability, requires a deeper understanding of causal relationships and interactions among a diverse spectrum of spatio-temporally distributed entities. In these applications, the ability to leverage spatio-temporal data to obtain causally-based situational awareness and to develop informed forecasts to provide resilience at different scales is critical. While the promise of a causally-grounded approach to these challenges is apparent, the core data technologies needed to achieve these are in the early stages and lack a framework to help realize their potential. In this paper, we argue that there is an urgent need for a novel paradigm of spatio-causal research built on computational advances in, spatio-temporal data and model integration, causal learning and discovery, large scale data- and model-driven simulations, emulations, and forecasting, spatio-temporal data-driven and model centric operational recommendations, and effective causally-driven visualization and explanation. We, thus, provide a vision, and a road-map, for spatio-causal situation awareness, forecasting, and planning.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141353812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mobility Data Science: Perspectives and Challenges 移动数据科学:视角与挑战
IF 1.9 Q1 Mathematics Pub Date : 2024-05-07 DOI: 10.1145/3652158
M. Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, W. Aref, G. Andrienko, N. Andrienko, Yang Cao, Sanjay Chawla, R. Cheng, P. Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, D. Gunopulos, C. S. Jensen, Joon-Seok Kim, Peer Kröger Kyoung-Sook Kim, John Krumm, Johannes Lauer, A. Magdy, Mario A. Nascimento, S. Ravada, Matthias Renz, Dimitris Sacharidis, Flora Salim, Mohamed Sarwat, M. Schoemans, Cyrus Shahabi, Bettina Speckmann, E. Tanin, Xu Teng, Y. Theodoridis, Kristian Torp, Goce Trajcevski, Mar van Kreveld, C. Wenk, Martin Werner, Raymond E. Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang
Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art, and describe open challenges for the research community in the coming years.
移动数据捕捉移动物体(如人类、动物和汽车)的位置。随着配备 GPS 的移动设备和其他廉价定位跟踪技术的出现,移动数据的收集无处不在。近年来,移动数据的使用已在交通管理、城市规划和健康科学等多个领域产生了重大影响。在本文中,我们将介绍移动数据科学领域。为了实现移动数据科学的统一方法,我们提出了一个包含以下组件的管道:移动数据收集、清理、分析、管理和隐私。针对每个组成部分,我们解释了移动数据科学与一般数据科学的不同之处,调查了当前的技术水平,并描述了未来几年研究界面临的挑战。
{"title":"Mobility Data Science: Perspectives and Challenges","authors":"M. Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, W. Aref, G. Andrienko, N. Andrienko, Yang Cao, Sanjay Chawla, R. Cheng, P. Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, D. Gunopulos, C. S. Jensen, Joon-Seok Kim, Peer Kröger Kyoung-Sook Kim, John Krumm, Johannes Lauer, A. Magdy, Mario A. Nascimento, S. Ravada, Matthias Renz, Dimitris Sacharidis, Flora Salim, Mohamed Sarwat, M. Schoemans, Cyrus Shahabi, Bettina Speckmann, E. Tanin, Xu Teng, Y. Theodoridis, Kristian Torp, Goce Trajcevski, Mar van Kreveld, C. Wenk, Martin Werner, Raymond E. Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang","doi":"10.1145/3652158","DOIUrl":"https://doi.org/10.1145/3652158","url":null,"abstract":"Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art, and describe open challenges for the research community in the coming years.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph Sampling for Map Comparison 用于地图比较的图形取样
IF 1.9 Q1 Mathematics Pub Date : 2024-05-03 DOI: 10.1145/3662733
J. Aguilar, K. Buchin, M. Buchin, Erfan Hosseini Sereshgi, Rodrigo I. Silveira, C. Wenk
Comparing two road maps is a basic operation that arises in a variety of situations. A map comparison method that is commonly used, mainly in the context of comparing reconstructed maps to ground truth maps, is based on graph sampling . The essential idea is to first compute a set of point samples on each map, and then to match pairs of samples—one from each map—in a one-to-one fashion. For deciding whether two samples can be matched, different criteria, e.g., based on distance or orientation, can be used. The total number of matched pairs gives a measure of how similar the maps are. Since the work of Biagioni and Eriksson [11, 12], graph sampling methods have become widely used. However, there are different ways to implement each of the steps, which can lead to significant differences in the results. This means that conclusions drawn from different studies that seemingly use the same comparison method, cannot necessarily be compared. In this work we present a unified approach to graph sampling for map comparison. We present the method in full generality, discussing the main decisions involved in its implementation. In particular, we point out the importance of the sampling method (GEO vs. TOPO) and that of the matching definition, discussing the main options used, and proposing alternatives for both key steps. We experimentally evaluate the different sampling and matching options considered on map datasets and reconstructed maps. Furthermore, we provide a code base and an interactive visualization tool to set a standard for future evaluations in the field of map construction and map comparison.
比较两幅路线图是在各种情况下都会出现的基本操作。一种常用的地图比较方法基于图采样,主要用于比较重建地图和地面实况地图。其基本思想是首先计算每张地图上的一组点样本,然后以一对一的方式匹配每张地图上的一对样本。在决定两个样本是否可以匹配时,可以使用不同的标准,例如基于距离或方向的标准。匹配对的总数可以衡量地图的相似程度。 自 Biagioni 和 Eriksson [11, 12] 的研究工作以来,图抽样方法得到了广泛应用。然而,每个步骤都有不同的实施方法,这可能导致结果的显著差异。这意味着,看似使用相同比较方法的不同研究得出的结论不一定能进行比较。在这项工作中,我们提出了一种用于地图比较的统一图抽样方法。我们全面介绍了该方法,并讨论了实施过程中涉及的主要决策。我们特别指出了采样方法(GEO 与 TOPO)和匹配定义的重要性,讨论了使用的主要选项,并为这两个关键步骤提出了替代方案。我们在地图数据集和重建地图上对所考虑的不同取样和匹配方案进行了实验评估。此外,我们还提供了一个代码库和一个交互式可视化工具,为今后在地图构建和地图对比领域进行评估设定了标准。
{"title":"Graph Sampling for Map Comparison","authors":"J. Aguilar, K. Buchin, M. Buchin, Erfan Hosseini Sereshgi, Rodrigo I. Silveira, C. Wenk","doi":"10.1145/3662733","DOIUrl":"https://doi.org/10.1145/3662733","url":null,"abstract":"\u0000 Comparing two road maps is a basic operation that arises in a variety of situations. A map comparison method that is commonly used, mainly in the context of comparing reconstructed maps to ground truth maps, is based on\u0000 graph sampling\u0000 . The essential idea is to first compute a set of point samples on each map, and then to match pairs of samples—one from each map—in a one-to-one fashion. For deciding whether two samples can be matched, different criteria, e.g., based on distance or orientation, can be used. The total number of matched pairs gives a measure of how similar the maps are.\u0000 \u0000 Since the work of Biagioni and Eriksson [11, 12], graph sampling methods have become widely used. However, there are different ways to implement each of the steps, which can lead to significant differences in the results. This means that conclusions drawn from different studies that seemingly use the same comparison method, cannot necessarily be compared.\u0000 In this work we present a unified approach to graph sampling for map comparison. We present the method in full generality, discussing the main decisions involved in its implementation. In particular, we point out the importance of the sampling method (GEO vs. TOPO) and that of the matching definition, discussing the main options used, and proposing alternatives for both key steps. We experimentally evaluate the different sampling and matching options considered on map datasets and reconstructed maps. Furthermore, we provide a code base and an interactive visualization tool to set a standard for future evaluations in the field of map construction and map comparison.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141016446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent Representation Learning for Geospatial Entities 地理空间实体的潜在表征学习
IF 1.9 Q1 Mathematics Pub Date : 2024-05-02 DOI: 10.1145/3663474
Ween Jiann Lee, Hady W. Lauw
Representation learning has been instrumental in the success of machine learning, offering compact and performant data representations for diverse downstream tasks. In the spatial domain, it has been pivotal in extracting latent patterns from various data types, including points, polylines, polygons, and networked structures. However, existing approaches often fall short of explicitly capturing both semantic and spatial information, relying on proxies and synthetic features. This paper presents GeoNN, a novel graph neural network-based model designed to learn spatially-aware embeddings for geospatial entities. GeoNN leverages edge features generated from geodesic functions, dynamically selecting relevant features based on relative locations. It introduces both transductive (GeoNN-T) and inductive (GeoNN-I) models, ensuring effective encoding of geospatial features and scalability with entity changes. Extensive experiments demonstrate GeoNN’s effectiveness in location-sensitive superpixel-based graphs and real-world points of interest, outperforming baselines across various evaluation measures.
表征学习为各种下游任务提供了结构紧凑、性能良好的数据表示,对机器学习的成功起到了重要作用。在空间领域,它在从各种数据类型(包括点、折线、多边形和网络结构)中提取潜在模式方面发挥了关键作用。然而,现有的方法往往无法明确捕捉语义和空间信息,只能依赖代理和合成特征。本文介绍的 GeoNN 是一种基于图神经网络的新型模型,旨在学习地理空间实体的空间感知嵌入。GeoNN 利用大地函数生成的边缘特征,根据相对位置动态选择相关特征。它同时引入了转导(GeoNN-T)和归纳(GeoNN-I)模型,确保对地理空间特征的有效编码和实体变化时的可扩展性。大量实验证明,GeoNN 在基于位置敏感超像素的图形和现实世界兴趣点中非常有效,在各种评估指标上都优于基线。
{"title":"Latent Representation Learning for Geospatial Entities","authors":"Ween Jiann Lee, Hady W. Lauw","doi":"10.1145/3663474","DOIUrl":"https://doi.org/10.1145/3663474","url":null,"abstract":"Representation learning has been instrumental in the success of machine learning, offering compact and performant data representations for diverse downstream tasks. In the spatial domain, it has been pivotal in extracting latent patterns from various data types, including points, polylines, polygons, and networked structures. However, existing approaches often fall short of explicitly capturing both semantic and spatial information, relying on proxies and synthetic features. This paper presents GeoNN, a novel graph neural network-based model designed to learn spatially-aware embeddings for geospatial entities. GeoNN leverages edge features generated from geodesic functions, dynamically selecting relevant features based on relative locations. It introduces both transductive (GeoNN-T) and inductive (GeoNN-I) models, ensuring effective encoding of geospatial features and scalability with entity changes. Extensive experiments demonstrate GeoNN’s effectiveness in location-sensitive superpixel-based graphs and real-world points of interest, outperforming baselines across various evaluation measures.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141018785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Simulation Data to Understand Bias in Predictive Models of Infectious Disease Spread 利用模拟数据了解传染病传播预测模型的偏差
IF 1.9 Q1 Mathematics Pub Date : 2024-04-25 DOI: 10.1145/3660631
Andreas Züfle, Flora Salim, Taylor Anderson, M. Scotch, Li Xiong, Kacper Sokol, Hao Xue, Ruochen Kong, David Heslop, Hye-Young Paik, C. R. MacIntyre
The spread of infectious diseases is a highly complex spatiotemporal process, difficult to understand, predict, and effectively respond to. Machine learning and artificial intelligence (AI) have achieved impressive results in other learning and prediction tasks; however, while many AI solutions are developed for disease prediction, only a few of them are adopted by decision-makers to support policy interventions. Among several issues preventing their uptake, AI methods are known to amplify the bias in the data they are trained on. This is especially problematic for infectious disease models that typically leverage large, open, and inherently biased spatiotemporal data. These biases may propagate through the modeling pipeline to decision-making, resulting in inequitable policy interventions. Therefore, there is a need to gain an understanding of how the AI disease modeling pipeline can mitigate biased input data, in-processing models, and biased outputs. Specifically, our vision is to develop a large-scale micro-simulation of individuals from which human mobility, population, and disease ground truth data can be obtained. From this complete dataset – which may not reflect the real world – we can sample and inject different types of bias. By using the sampled data in which bias is known (as it is given as the simulation parameter), we can explore how existing solutions for fairness in AI can mitigate and correct these biases and investigate novel AI fairness solutions. Achieving this vision would result in improved trust in such models for informing fair and equitable policy interventions.
传染病的传播是一个高度复杂的时空过程,难以理解、预测和有效应对。机器学习和人工智能(AI)在其他学习和预测任务中取得了令人印象深刻的成果;然而,虽然为疾病预测开发了许多人工智能解决方案,但只有少数方案被决策者采用,以支持政策干预。众所周知,人工智能方法会放大其训练数据的偏差,这也是阻碍其被采用的几个问题之一。这对于传染病模型来说尤其成问题,因为传染病模型通常利用的是大量、开放和固有偏差的时空数据。这些偏差可能会通过建模管道传播到决策过程中,导致不公平的政策干预。因此,有必要了解人工智能疾病建模管道如何能够减少有偏差的输入数据、内处理模型和有偏差的输出。具体来说,我们的愿景是开发一种大规模的个人微观模拟,从中获取人类流动、人口和疾病的基本真实数据。从这个完整的数据集(可能无法反映真实世界)中,我们可以采样并注入不同类型的偏差。通过使用已知偏差(因为偏差已作为模拟参数给出)的采样数据,我们可以探索现有的人工智能公平性解决方案如何减轻和纠正这些偏差,并研究新的人工智能公平性解决方案。实现这一愿景将提高人们对此类模型的信任度,从而为公平公正的政策干预提供依据。
{"title":"Leveraging Simulation Data to Understand Bias in Predictive Models of Infectious Disease Spread","authors":"Andreas Züfle, Flora Salim, Taylor Anderson, M. Scotch, Li Xiong, Kacper Sokol, Hao Xue, Ruochen Kong, David Heslop, Hye-Young Paik, C. R. MacIntyre","doi":"10.1145/3660631","DOIUrl":"https://doi.org/10.1145/3660631","url":null,"abstract":"The spread of infectious diseases is a highly complex spatiotemporal process, difficult to understand, predict, and effectively respond to. Machine learning and artificial intelligence (AI) have achieved impressive results in other learning and prediction tasks; however, while many AI solutions are developed for disease prediction, only a few of them are adopted by decision-makers to support policy interventions. Among several issues preventing their uptake, AI methods are known to amplify the bias in the data they are trained on. This is especially problematic for infectious disease models that typically leverage large, open, and inherently biased spatiotemporal data. These biases may propagate through the modeling pipeline to decision-making, resulting in inequitable policy interventions. Therefore, there is a need to gain an understanding of how the AI disease modeling pipeline can mitigate biased input data, in-processing models, and biased outputs. Specifically, our vision is to develop a large-scale micro-simulation of individuals from which human mobility, population, and disease ground truth data can be obtained. From this complete dataset – which may not reflect the real world – we can sample and inject different types of bias. By using the sampled data in which bias is known (as it is given as the simulation parameter), we can explore how existing solutions for fairness in AI can mitigate and correct these biases and investigate novel AI fairness solutions. Achieving this vision would result in improved trust in such models for informing fair and equitable policy interventions.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks 用于多成本路网天际线路径查询评估的骨干索引和 GNN 模型
IF 1.9 Q1 Mathematics Pub Date : 2024-04-23 DOI: 10.1145/3660632
Qixu Gong, Huiying Chen, Huiping Cao, Jiefei Liu
Skyline path queries (SPQs) extend skyline queries to multi-dimensional networks, such as multi-cost road networks (MCRNs). Such queries return a set of non-dominated paths between two given network nodes. Despite the existence of extensive works on evaluating different SPQ variants, SPQ evaluation is still very inefficient due to the nonexistence of efficient index structures to support such queries. Existing index building approaches for supporting shortest-path query execution, when directly extended to support SPQs, use an unreasonable amount of space and time to build, making them impractical for processing large graphs. In this paper, we propose a novel index structure, backbone index , and a corresponding index construction method that condenses an initial MCRN to multiple smaller summarized graphs with different granularity. We present efficient approaches to find approximate solutions to SPQs by utilizing the backbone index structure. Furthermore, considering making good use of historical query and query results, we propose two models, S kyline P ath G raph N eural N etwork (SP-GNN) and T ransfer SP-GNN (TSP-GNN), to support effective SPQ processing. Our extensive experiments on real-world large road networks show that the backbone index can support finding meaningful approximate SPQ solutions efficiently. The backbone index can be constructed in a reasonable time, which dramatically outperforms the construction of other types of indexes for road networks. As far as we know, this is the first compact index structure that can support efficient approximate SPQ evaluation on large MCRNs. The results on the SP-GNN and TSP-GNN models also show that both models can help get approximate SPQ answers efficiently.
天际线路径查询(SPQ)将天际线查询扩展到多维网络,如多成本道路网络(MCRN)。此类查询会返回两个给定网络节点之间的一组非主干路径。尽管有大量工作在评估不同的 SPQ 变体,但由于不存在支持此类查询的高效索引结构,SPQ 评估的效率仍然很低。现有的支持最短路径查询执行的索引构建方法在直接扩展到支持 SPQ 时,会耗费大量的空间和时间,使其在处理大型图时变得不切实际。在本文中,我们提出了一种新颖的索引结构--骨干索引,以及相应的索引构建方法,该方法可将初始 MCRN 压缩为多个具有不同粒度的较小汇总图。我们提出了利用骨干索引结构找到 SPQ 近似解的有效方法。此外,考虑到充分利用历史查询和查询结果,我们提出了两种模型,即S kyline P ath G raph N eural N etwork(SP-GNN)和T ransfer SP-GNN(TSP-GNN),以支持有效的SPQ处理。我们在真实世界的大型道路网络上进行的大量实验表明,骨干索引能够支持高效地找到有意义的近似 SPQ 解。骨干索引可以在合理的时间内构建,大大优于为道路网络构建其他类型的索引。据我们所知,这是第一个能支持在大型 MCRN 上高效近似 SPQ 评估的紧凑型索引结构。SP-GNN 和 TSP-GNN 模型的结果也表明,这两种模型都能帮助高效获得近似 SPQ 答案。
{"title":"Backbone Index and GNN Models for Skyline Path Query Evaluation over Multi-cost Road Networks","authors":"Qixu Gong, Huiying Chen, Huiping Cao, Jiefei Liu","doi":"10.1145/3660632","DOIUrl":"https://doi.org/10.1145/3660632","url":null,"abstract":"\u0000 Skyline path queries (SPQs) extend skyline queries to multi-dimensional networks, such as multi-cost road networks (MCRNs). Such queries return a set of non-dominated paths between two given network nodes. Despite the existence of extensive works on evaluating different SPQ variants, SPQ evaluation is still very inefficient due to the nonexistence of efficient index structures to support such queries. Existing index building approaches for supporting shortest-path query execution, when directly extended to support SPQs, use an unreasonable amount of space and time to build, making them impractical for processing large graphs. In this paper, we propose a novel index structure,\u0000 backbone index\u0000 , and a corresponding index construction method that condenses an initial MCRN to multiple smaller summarized graphs with different granularity. We present efficient approaches to find approximate solutions to SPQs by utilizing the backbone index structure. Furthermore, considering making good use of historical query and query results, we propose two models,\u0000 S\u0000 kyline\u0000 P\u0000 ath\u0000 G\u0000 raph\u0000 N\u0000 eural\u0000 N\u0000 etwork (SP-GNN) and\u0000 T\u0000 ransfer SP-GNN (TSP-GNN), to support effective SPQ processing. Our extensive experiments on real-world large road networks show that the backbone index can support finding meaningful approximate SPQ solutions efficiently. The backbone index can be constructed in a reasonable time, which dramatically outperforms the construction of other types of indexes for road networks. As far as we know, this is the first compact index structure that can support efficient approximate SPQ evaluation on large MCRNs. The results on the SP-GNN and TSP-GNN models also show that both models can help get approximate SPQ answers efficiently.\u0000","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overcoming Catastrophic Forgetting in Continual Fine-Grained Urban Flow Inference 克服连续细粒度城市流推断中的灾难性遗忘
IF 1.9 Q1 Mathematics Pub Date : 2024-04-20 DOI: 10.1145/3660523
Xovee Xu, Ting Zhong, Haoyang Yu, Fan Zhou, Goce Trajcevski
Citywide fine-grained urban flow inference (FUFI) problem aims to infer the high-resolution flow maps from the coarse-grained ones, which plays an important role in sustainable and economic urban computing and intelligent traffic management. Previous models tackle this problem from spatial constraint, external factors and memory cost. However, utilizing the new urban flow maps to calibrate the learned model is very challenging due to the “catastrophic forgetting” problem and is still under-explored. In this paper, we make the first step in FUFI and present CUFAR – Continual Urban Flow inference with augmented Adaptive knowledge Replay – a novel framework for inferring the fine-grained citywide traffic flows. Specifically, (1) we design a spatial-temporal inference network that can extract better flow map features from both local and global levels; (2) then we present an augmented adaptive knowledge replay (AKR) training algorithm to selectively replay the learned knowledge to facilitate the learning process of the model on new knowledge without forgetting. We apply several data augmentation techniques to improve the generalization capability of the learning model, gaining additional performance improvements. We also propose a knowledge discriminator to avoid the “negative replaying” issue introduced by noisy urban flow maps. Extensive experiments on two large-scale real-world FUFI datasets demonstrate that our proposed model consistently outperforms strong baselines and effectively mitigates the forgetting problem.
城市细粒度流量推断(FUFI)问题旨在从粗粒度流量图推断出高分辨率流量图,这在可持续、经济的城市计算和智能交通管理中发挥着重要作用。以往的模型从空间限制、外部因素和内存成本等方面来解决这一问题。然而,由于 "灾难性遗忘 "问题的存在,利用新的城市流图来校准所学模型是非常具有挑战性的,目前还没有得到充分的研究。在本文中,我们迈出了 FUFI 的第一步,并提出了 CUFAR - 利用增强型自适应知识重放进行连续城市流量推断 - 一种用于推断细粒度全市交通流量的新型框架。具体来说,(1) 我们设计了一个时空推理网络,可以从局部和全局两个层面提取更好的流量图特征;(2) 然后,我们提出了一种增强型自适应知识重放(AKR)训练算法,选择性地重放已学知识,以促进模型对新知识的学习过程,而不会遗忘。我们应用了几种数据增强技术来提高学习模型的泛化能力,从而获得额外的性能改进。我们还提出了一种知识判别器,以避免由噪声城市流图带来的 "负重放 "问题。在两个大规模真实 FUFI 数据集上进行的广泛实验表明,我们提出的模型始终优于强大的基线模型,并有效缓解了遗忘问题。
{"title":"Overcoming Catastrophic Forgetting in Continual Fine-Grained Urban Flow Inference","authors":"Xovee Xu, Ting Zhong, Haoyang Yu, Fan Zhou, Goce Trajcevski","doi":"10.1145/3660523","DOIUrl":"https://doi.org/10.1145/3660523","url":null,"abstract":"Citywide fine-grained urban flow inference (FUFI) problem aims to infer the high-resolution flow maps from the coarse-grained ones, which plays an important role in sustainable and economic urban computing and intelligent traffic management. Previous models tackle this problem from spatial constraint, external factors and memory cost. However, utilizing the new urban flow maps to calibrate the learned model is very challenging due to the “catastrophic forgetting” problem and is still under-explored. In this paper, we make the first step in FUFI and present CUFAR – Continual Urban Flow inference with augmented Adaptive knowledge Replay – a novel framework for inferring the fine-grained citywide traffic flows. Specifically, (1) we design a spatial-temporal inference network that can extract better flow map features from both local and global levels; (2) then we present an augmented adaptive knowledge replay (AKR) training algorithm to selectively replay the learned knowledge to facilitate the learning process of the model on new knowledge without forgetting. We apply several data augmentation techniques to improve the generalization capability of the learning model, gaining additional performance improvements. We also propose a knowledge discriminator to avoid the “negative replaying” issue introduced by noisy urban flow maps. Extensive experiments on two large-scale real-world FUFI datasets demonstrate that our proposed model consistently outperforms strong baselines and effectively mitigates the forgetting problem.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140680537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Generic Machine Learning Model for Spatial Query Optimization based on Spatial Embeddings 基于空间嵌入的空间查询优化通用机器学习模型
IF 1.9 Q1 Mathematics Pub Date : 2024-04-13 DOI: 10.1145/3657633
A. Belussi, S. Migliorini, Ahmed Eldawy
Machine learning (ML) and deep learning (DL) techniques are increasingly applied to produce efficient query optimizers, in particular in regards to big data systems. The optimization of spatial operations is even more challenging due to the inherent complexity of such kind of operations, like spatial join or range query, and the peculiarities of spatial data. Although a few ML-based spatial query optimizers have been proposed in literature, their design limits their use, since each one is tailored for a specific collection of datasets, a specific operation, or a specific hardware setting. Changes to any of these will require building and training a completely new model which entails collecting a new very large training dataset to obtain a good model. This paper proposes a different approach which exploits the use of the novel notion of spatial embedding to overcome these limitations. In particular, a preliminary model is defined which captures the relevant features of spatial datasets, independently from the operation to be optimized and in an unsupervised manner. This model is trained with a large amount of both synthetic and real-world data, with the aim to produce meaningful spatial embeddings. The construction of an embedding model could be intended as a preliminary step for the optimization of many different spatial operations, so the cost of its building can be compensated during the subsequent construction of specific models. Indeed, for each considered spatial operation, a specific tailored model will be trained but by using spatial embeddings as input, so a very little amount of training data points is required for them. Three peculiar operations are considered as proof of concept in this paper: range query, self-join, and binary spatial join. Finally, a comparison with an alternative technique, known as transfer learning, is provided and the advantages of the proposed technique over it are highlighted.
机器学习(ML)和深度学习(DL)技术越来越多地被应用于生成高效的查询优化器,尤其是在大数据系统方面。由于空间连接或范围查询等操作本身的复杂性以及空间数据的特殊性,空间操作的优化更具挑战性。虽然文献中已经提出了一些基于 ML 的空间查询优化器,但它们的设计限制了其使用,因为每个优化器都是为特定的数据集集合、特定的操作或特定的硬件设置量身定制的。要对其中任何一项进行更改,都需要建立和训练一个全新的模型,这就需要收集一个新的超大训练数据集,以获得一个良好的模型。 本文提出了一种不同的方法,利用新颖的空间嵌入概念来克服这些限制。特别是,本文定义了一个初步模型,该模型以无监督的方式捕捉空间数据集的相关特征,与需要优化的操作无关。该模型使用大量合成数据和真实世界数据进行训练,目的是生成有意义的空间嵌入。嵌入模型的构建可以作为许多不同空间操作优化的第一步,因此在随后构建特定模型时,可以补偿构建模型的成本。事实上,对于每一种考虑到的空间操作,都将通过使用空间嵌入作为输入来训练特定的定制模型,因此只需要很少的训练数据点。作为概念验证,本文考虑了三种特殊操作:范围查询、自连接和二进制空间连接。最后,本文与另一种称为迁移学习的技术进行了比较,并强调了所提出的技术与之相比的优势。
{"title":"A Generic Machine Learning Model for Spatial Query Optimization based on Spatial Embeddings","authors":"A. Belussi, S. Migliorini, Ahmed Eldawy","doi":"10.1145/3657633","DOIUrl":"https://doi.org/10.1145/3657633","url":null,"abstract":"Machine learning (ML) and deep learning (DL) techniques are increasingly applied to produce efficient query optimizers, in particular in regards to big data systems. The optimization of spatial operations is even more challenging due to the inherent complexity of such kind of operations, like spatial join or range query, and the peculiarities of spatial data. Although a few ML-based spatial query optimizers have been proposed in literature, their design limits their use, since each one is tailored for a specific collection of datasets, a specific operation, or a specific hardware setting. Changes to any of these will require building and training a completely new model which entails collecting a new very large training dataset to obtain a good model.\u0000 \u0000 This paper proposes a different approach which exploits the use of the novel notion of\u0000 spatial embedding\u0000 to overcome these limitations. In particular, a preliminary model is defined which captures the relevant features of spatial datasets, independently from the operation to be optimized and in an unsupervised manner. This model is trained with a large amount of both synthetic and real-world data, with the aim to produce meaningful spatial embeddings. The construction of an embedding model could be intended as a preliminary step for the optimization of many different spatial operations, so the cost of its building can be compensated during the subsequent construction of specific models. Indeed, for each considered spatial operation, a specific tailored model will be trained but by using spatial embeddings as input, so a very little amount of training data points is required for them. Three peculiar operations are considered as proof of concept in this paper: range query, self-join, and binary spatial join. Finally, a comparison with an alternative technique, known as transfer learning, is provided and the advantages of the proposed technique over it are highlighted.\u0000","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140707657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictability in Human Mobility: From Individual to Collective (Vision Paper) 人类流动的可预测性:从个人到集体(展望论文)
IF 1.9 Q1 Mathematics Pub Date : 2024-04-09 DOI: 10.1145/3656640
Ying Zhang, Zhiwen Yu, Minling Dang, En Xu, Bin Guo, Yuxuan Liang, Yifang Yin, Roger Zimmermann
Human mobility is the foundation of urban dynamics and its prediction significantly benefits various downstream location-based services. Nowadays, while deep learning approaches are dominating the mobility prediction field where various model architectures/designs are continuously updating to push up the prediction accuracy, there naturally arises a question: whether these models are sufficiently good to reach the best possible prediction accuracy? To answer this question, predictability study is a method that quantifies the inherent regularities of the human mobility data and links the result to that limit. Mainstream predictability studies achieve this by analyzing the individual trajectories and merging all individual results to obtain an upper bound. However, the multiple individuals composing the city are not totally independent and the individual behavior is heavily influenced by its implicit or explicit surroundings. Therefore, the collective factor should be considered in the mobility predictability measurement, which has not been addressed before. This vision paper points out this concern and envisions a few potential research problems along such an individual-to-collective transition from both data and methodology aspects. We hope the discussion in this paper sheds some light on the human mobility predictability community.
人类流动性是城市动态的基础,对其进行预测对各种下游定位服务大有裨益。如今,深度学习方法在移动性预测领域占据主导地位,各种模型架构/设计不断更新,以提高预测精度,但自然也会产生一个问题:这些模型是否足以达到最佳预测精度?为了回答这个问题,可预测性研究是一种量化人类移动数据内在规律性并将结果与该限制联系起来的方法。主流的可预测性研究是通过分析个体轨迹并合并所有个体结果以获得上限来实现这一目标的。然而,组成城市的多个个体并不是完全独立的,个体行为在很大程度上受到周围隐性或显性环境的影响。因此,在流动性可预测性测量中应考虑到集体因素,而这一点之前还未涉及。本愿景论文指出了这一问题,并从数据和方法论两方面探讨了从个体到集体的转变过程中可能出现的一些研究问题。我们希望本文的讨论能为人类流动性可预测性研究领域带来一些启发。
{"title":"Predictability in Human Mobility: From Individual to Collective (Vision Paper)","authors":"Ying Zhang, Zhiwen Yu, Minling Dang, En Xu, Bin Guo, Yuxuan Liang, Yifang Yin, Roger Zimmermann","doi":"10.1145/3656640","DOIUrl":"https://doi.org/10.1145/3656640","url":null,"abstract":"Human mobility is the foundation of urban dynamics and its prediction significantly benefits various downstream location-based services. Nowadays, while deep learning approaches are dominating the mobility prediction field where various model architectures/designs are continuously updating to push up the prediction accuracy, there naturally arises a question: whether these models are sufficiently good to reach the best possible prediction accuracy? To answer this question, predictability study is a method that quantifies the inherent regularities of the human mobility data and links the result to that limit. Mainstream predictability studies achieve this by analyzing the individual trajectories and merging all individual results to obtain an upper bound. However, the multiple individuals composing the city are not totally independent and the individual behavior is heavily influenced by its implicit or explicit surroundings. Therefore, the collective factor should be considered in the mobility predictability measurement, which has not been addressed before. This vision paper points out this concern and envisions a few potential research problems along such an individual-to-collective transition from both data and methodology aspects. We hope the discussion in this paper sheds some light on the human mobility predictability community.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140725984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACM Transactions on Spatial Algorithms and Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1