弹丸-目标-枪口组件在穿透开始运动期间的热弹性冲击建模

J. Nagler
{"title":"弹丸-目标-枪口组件在穿透开始运动期间的热弹性冲击建模","authors":"J. Nagler","doi":"10.1177/15485129231210300","DOIUrl":null,"url":null,"abstract":"This paper presents the thermoelastic shock wave model components of projectile, target, and muzzle tube during the initial start of penetration. The penetration model is combined using pressure and temperature (e.g., mechanical and thermal shock) that act separately at the moment of penetration (a few microseconds) into a homogeneous or first-layer armor body. The armor’s shape and material will be investigated based on contact principal stress. The reciprocal influence between the penetrator and the armor in the aspect of the projectile nose shape will also be demonstrated. Moreover, the penetrator thermoelastic material’s durability will be examined, based on von Mises criterion. The examination for the initial elastic contact stress impact will be performed by using the explicit solution to temperature-displacement coupling equilibrium, based on commercial finite elements modeling. In addition, a modified impact contact stress model based on both mechanical and thermal energies was proposed and found to agree with the literature. Brief conceptual analysis of projectile–shield interactions was examined. Finally, shooting tube muzzle thermoelastic analysis was performed alongside a literature comparison, which was found to agree qualitatively and quantitatively. Muzzle tube material impact analysis was performed. Finally, it was concluded that muzzle tubes obey the rule that a shorter cylinder length tube develops higher muzzle tube principal stresses.","PeriodicalId":508000,"journal":{"name":"The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelastic impact modeling for projectile–target–muzzle components during penetration start of motion\",\"authors\":\"J. Nagler\",\"doi\":\"10.1177/15485129231210300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the thermoelastic shock wave model components of projectile, target, and muzzle tube during the initial start of penetration. The penetration model is combined using pressure and temperature (e.g., mechanical and thermal shock) that act separately at the moment of penetration (a few microseconds) into a homogeneous or first-layer armor body. The armor’s shape and material will be investigated based on contact principal stress. The reciprocal influence between the penetrator and the armor in the aspect of the projectile nose shape will also be demonstrated. Moreover, the penetrator thermoelastic material’s durability will be examined, based on von Mises criterion. The examination for the initial elastic contact stress impact will be performed by using the explicit solution to temperature-displacement coupling equilibrium, based on commercial finite elements modeling. In addition, a modified impact contact stress model based on both mechanical and thermal energies was proposed and found to agree with the literature. Brief conceptual analysis of projectile–shield interactions was examined. Finally, shooting tube muzzle thermoelastic analysis was performed alongside a literature comparison, which was found to agree qualitatively and quantitatively. Muzzle tube material impact analysis was performed. Finally, it was concluded that muzzle tubes obey the rule that a shorter cylinder length tube develops higher muzzle tube principal stresses.\",\"PeriodicalId\":508000,\"journal\":{\"name\":\"The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129231210300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129231210300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了弹丸、目标和枪管在穿透初始阶段的热弹性冲击波模型组件。穿透模型结合了压力和温度(如机械冲击和热冲击),在穿透瞬间(几微秒)分别作用于均质或第一层装甲体。装甲的形状和材料将根据接触主应力进行研究。还将证明穿甲弹和装甲在弹头形状方面的相互影响。此外,还将根据 von Mises 准则检验穿甲弹热弹性材料的耐久性。将使用基于商业有限元建模的温度-位移耦合平衡显式解对初始弹性接触应力冲击进行检验。此外,还提出了一种基于机械能和热能的修正冲击接触应力模型,结果与文献一致。研究了射弹与防护罩相互作用的简要概念分析。最后,在进行文献比较的同时,还进行了射击管枪口热弹性分析,结果发现两者在定性和定量上都一致。还进行了枪管材料影响分析。最后,得出的结论是,枪口管符合以下规则:较短的枪管长度会产生较高的枪口管主应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoelastic impact modeling for projectile–target–muzzle components during penetration start of motion
This paper presents the thermoelastic shock wave model components of projectile, target, and muzzle tube during the initial start of penetration. The penetration model is combined using pressure and temperature (e.g., mechanical and thermal shock) that act separately at the moment of penetration (a few microseconds) into a homogeneous or first-layer armor body. The armor’s shape and material will be investigated based on contact principal stress. The reciprocal influence between the penetrator and the armor in the aspect of the projectile nose shape will also be demonstrated. Moreover, the penetrator thermoelastic material’s durability will be examined, based on von Mises criterion. The examination for the initial elastic contact stress impact will be performed by using the explicit solution to temperature-displacement coupling equilibrium, based on commercial finite elements modeling. In addition, a modified impact contact stress model based on both mechanical and thermal energies was proposed and found to agree with the literature. Brief conceptual analysis of projectile–shield interactions was examined. Finally, shooting tube muzzle thermoelastic analysis was performed alongside a literature comparison, which was found to agree qualitatively and quantitatively. Muzzle tube material impact analysis was performed. Finally, it was concluded that muzzle tubes obey the rule that a shorter cylinder length tube develops higher muzzle tube principal stresses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quantitative comparison of two different models of minefield transit Cutting edge technologies for future military applications: trends and challenges Developing an IoT-enabled probabilistic model for quick identification of hidden radioactive materials in maritime port operations to strengthen global supply chain security Statement of requirements on the accuracy of rocket CFD analysis using exterior ballistics for example rocket models Enhancing military medical evacuation dispatching with armed escort management: comparing model-based reinforcement learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1