{"title":"用于基于骨骼的动作识别的场景上下文感知图卷积网络","authors":"Wenxian Zhang","doi":"10.1049/cvi2.12253","DOIUrl":null,"url":null,"abstract":"<p>Skeleton-based action recognition methods commonly employ graph neural networks to learn different aspects of skeleton topology information However, these methods often struggle to capture contextual information beyond the skeleton topology. To address this issue, a Scene Context-aware Graph Convolutional Network (SCA-GCN) that leverages potential contextual information in the scene is proposed. Specifically, SCA-GCN learns the co-occurrence probabilities of actions in specific scenarios from a common knowledge base and fuses these probabilities into the original skeleton topology decoder, producing more robust results. To demonstrate the effectiveness of SCA-GCN, extensive experiments on four widely used datasets, that is, SBU, N-UCLA, NTU RGB + D, and NTU RGB + D 120 are conducted. The experimental results show that SCA-GCN surpasses existing methods, and its core idea can be extended to other methods with only some concatenation operations that consume less computational complexity.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 3","pages":"343-354"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12253","citationCount":"0","resultStr":"{\"title\":\"Scene context-aware graph convolutional network for skeleton-based action recognition\",\"authors\":\"Wenxian Zhang\",\"doi\":\"10.1049/cvi2.12253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skeleton-based action recognition methods commonly employ graph neural networks to learn different aspects of skeleton topology information However, these methods often struggle to capture contextual information beyond the skeleton topology. To address this issue, a Scene Context-aware Graph Convolutional Network (SCA-GCN) that leverages potential contextual information in the scene is proposed. Specifically, SCA-GCN learns the co-occurrence probabilities of actions in specific scenarios from a common knowledge base and fuses these probabilities into the original skeleton topology decoder, producing more robust results. To demonstrate the effectiveness of SCA-GCN, extensive experiments on four widely used datasets, that is, SBU, N-UCLA, NTU RGB + D, and NTU RGB + D 120 are conducted. The experimental results show that SCA-GCN surpasses existing methods, and its core idea can be extended to other methods with only some concatenation operations that consume less computational complexity.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 3\",\"pages\":\"343-354\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12253\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12253\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12253","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
基于骨架的动作识别方法通常采用图神经网络来学习骨架拓扑结构的不同方面信息,但这些方法往往难以捕捉骨架拓扑结构以外的上下文信息。为了解决这个问题,我们提出了一种场景上下文感知图卷积网络(SCA-GCN),它能充分利用场景中潜在的上下文信息。具体来说,SCA-GCN 从一个共同的知识库中学习特定场景中动作的共现概率,并将这些概率融合到原始骨架拓扑解码器中,从而产生更稳健的结果。为了证明 SCA-GCN 的有效性,我们在四个广泛使用的数据集(即 SBU、N-UCLA、NTU RGB + D 和 NTU RGB + D 120)上进行了大量实验。实验结果表明,SCA-GCN 超越了现有的方法,其核心思想可以扩展到其他方法,只需进行一些连接操作,计算复杂度较低。
Scene context-aware graph convolutional network for skeleton-based action recognition
Skeleton-based action recognition methods commonly employ graph neural networks to learn different aspects of skeleton topology information However, these methods often struggle to capture contextual information beyond the skeleton topology. To address this issue, a Scene Context-aware Graph Convolutional Network (SCA-GCN) that leverages potential contextual information in the scene is proposed. Specifically, SCA-GCN learns the co-occurrence probabilities of actions in specific scenarios from a common knowledge base and fuses these probabilities into the original skeleton topology decoder, producing more robust results. To demonstrate the effectiveness of SCA-GCN, extensive experiments on four widely used datasets, that is, SBU, N-UCLA, NTU RGB + D, and NTU RGB + D 120 are conducted. The experimental results show that SCA-GCN surpasses existing methods, and its core idea can be extended to other methods with only some concatenation operations that consume less computational complexity.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf