使用基于网站的 CNN Xception 转移学习对未流通纸币进行分类

Muhammad Albani, Rahmat Rizal Andhi
{"title":"使用基于网站的 CNN Xception 转移学习对未流通纸币进行分类","authors":"Muhammad Albani, Rahmat Rizal Andhi","doi":"10.35314/isi.v8i2.3657","DOIUrl":null,"url":null,"abstract":"- Rupiah banknotes are the main means of payment used by the public, but the lack of public knowledge regarding their maintenance and appropriateness characteristics causes damage to the Rupiah currency. Bank Indonesia is trying to overcome this problem with the \"Love Proudly Understand the Rupiah\" campaign, but it will be difficult to reach the entire community with this education alone. Therefore, a system was developed \"Classification of Rupiah Currency Unfit for Circulation using Website-based CNN time which has high accuracy for image classification, producing an accurate model with a short training time. Using a dataset of 14 classes of 2016 emission Rupiah currency, including 7 eligible and non-eligible denominations. Final results show 99.22% accuracy for training, 96.19 % for validation, and 93.57% for testing, in addition to developing deep learning methods, this model will be implemented on the website, which aims to make it easier and help the public to find out the suitability of the Rupiah banknotes they have.","PeriodicalId":354905,"journal":{"name":"INOVTEK Polbeng - Seri Informatika","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klasifikasi Uang Rupiah Kertas Tidak Layak Edar Menggunakan CNN Xception Transfer Learning Berbasis Website\",\"authors\":\"Muhammad Albani, Rahmat Rizal Andhi\",\"doi\":\"10.35314/isi.v8i2.3657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- Rupiah banknotes are the main means of payment used by the public, but the lack of public knowledge regarding their maintenance and appropriateness characteristics causes damage to the Rupiah currency. Bank Indonesia is trying to overcome this problem with the \\\"Love Proudly Understand the Rupiah\\\" campaign, but it will be difficult to reach the entire community with this education alone. Therefore, a system was developed \\\"Classification of Rupiah Currency Unfit for Circulation using Website-based CNN time which has high accuracy for image classification, producing an accurate model with a short training time. Using a dataset of 14 classes of 2016 emission Rupiah currency, including 7 eligible and non-eligible denominations. Final results show 99.22% accuracy for training, 96.19 % for validation, and 93.57% for testing, in addition to developing deep learning methods, this model will be implemented on the website, which aims to make it easier and help the public to find out the suitability of the Rupiah banknotes they have.\",\"PeriodicalId\":354905,\"journal\":{\"name\":\"INOVTEK Polbeng - Seri Informatika\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INOVTEK Polbeng - Seri Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35314/isi.v8i2.3657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INOVTEK Polbeng - Seri Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35314/isi.v8i2.3657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

- 印尼盾是公众使用的主要支付手段,但由于公众对印尼盾的维护和适宜性缺乏了解,导致印尼盾货币受损。印度尼西亚银行正试图通过 "爱护印尼盾,自豪地了解印尼盾 "活动来解决这一问题,但仅靠这一教育很难覆盖整个社会。因此,我们开发了 "使用基于网站的 CNN 时间对不适合流通的印尼盾货币进行分类 "系统,该系统对图像分类具有很高的准确性,能在很短的训练时间内生成准确的模型。该系统使用的数据集包含 14 类 2016 年发行的印尼盾货币,其中包括 7 种符合条件的面值和不符合条件的面值。最终结果显示,训练的准确率为 99.22%,验证的准确率为 96.19%,测试的准确率为 93.57%。除了开发深度学习方法外,该模型还将在网站上实施,旨在方便和帮助公众了解他们手中的卢比钞票是否合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Klasifikasi Uang Rupiah Kertas Tidak Layak Edar Menggunakan CNN Xception Transfer Learning Berbasis Website
- Rupiah banknotes are the main means of payment used by the public, but the lack of public knowledge regarding their maintenance and appropriateness characteristics causes damage to the Rupiah currency. Bank Indonesia is trying to overcome this problem with the "Love Proudly Understand the Rupiah" campaign, but it will be difficult to reach the entire community with this education alone. Therefore, a system was developed "Classification of Rupiah Currency Unfit for Circulation using Website-based CNN time which has high accuracy for image classification, producing an accurate model with a short training time. Using a dataset of 14 classes of 2016 emission Rupiah currency, including 7 eligible and non-eligible denominations. Final results show 99.22% accuracy for training, 96.19 % for validation, and 93.57% for testing, in addition to developing deep learning methods, this model will be implemented on the website, which aims to make it easier and help the public to find out the suitability of the Rupiah banknotes they have.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sistem Monitoring Suhu Dan Kelembaban Pada Mesin Pembiakan Telur Jangkrik Berbasis IoT Systematic Literature Review: Perbandingan Algoritma Klasifikasi Pengembangan Media Interaktif Berbasis Augmented Reality untuk Melatih Kemampuan Critical Thinking Perencanaan Arsitektur Enterprise Menggunakan Framework TOGAF (The Open Group Architecture Framework) Implementasi Internet Of Things Pada Protokol MQTT Dan HTTP Dalam Sistem Pendeteksi Banjir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1