{"title":"商业上可行的个性化被动义足的设计和机械验证","authors":"Charlotte Folinus, V. Amos G. Winter","doi":"10.1115/1.4064073","DOIUrl":null,"url":null,"abstract":"Current high-performance prosthetic feet work well for many users, but the low resolution of size and stiffness categories may limit walking performance for certain users. A line of prosthetic feet with a high resolution of sizes and stiffnesses, designed through amputee-specific personalization, could provide clinical and economic value. The lower leg trajectory error (LLTE) design framework facilitates the design of high-performance, amputee-specific prosthetic feet; however, previous foot prototypes were not designed to satisfy the economic, mechanical, and aesthetic requirements for commercial adoption. The aims of this work were to understand how a personalized, affordable prosthetic foot can align with the clinical-commercial ecosystem, innovate a viable future product, and inform other prosthesis designers of considerations required to connect innovation to real-world implementation. We evaluated needs by identifying how products, capital, and services flow between stakeholders, and we elucidated design requirements for a personalized prosthetic foot that can be manufactured, dis- tributed, and clinically provided. Based on material properties and manufacturing process capabilities, CNC machining of Nylon 6/6 satisfies these requirements. We present a novel parametric foot architecture that can be CNC machined, fits within a commercial foot shell, and can be designed for individual users' body characteristics and activity levels. Prototypes made using the new foot design behaved as anticipated (1-12% error in modeled displacement), satisfied industry-standard strength (ISO 10328) and mechanical performance (AOPA dynamic heel/keel) requirements, and elicited positive feedback from both amputees and prosthetists.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and mechanical validation of commercially viable, personalized passive prosthetic feet\",\"authors\":\"Charlotte Folinus, V. Amos G. Winter\",\"doi\":\"10.1115/1.4064073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current high-performance prosthetic feet work well for many users, but the low resolution of size and stiffness categories may limit walking performance for certain users. A line of prosthetic feet with a high resolution of sizes and stiffnesses, designed through amputee-specific personalization, could provide clinical and economic value. The lower leg trajectory error (LLTE) design framework facilitates the design of high-performance, amputee-specific prosthetic feet; however, previous foot prototypes were not designed to satisfy the economic, mechanical, and aesthetic requirements for commercial adoption. The aims of this work were to understand how a personalized, affordable prosthetic foot can align with the clinical-commercial ecosystem, innovate a viable future product, and inform other prosthesis designers of considerations required to connect innovation to real-world implementation. We evaluated needs by identifying how products, capital, and services flow between stakeholders, and we elucidated design requirements for a personalized prosthetic foot that can be manufactured, dis- tributed, and clinically provided. Based on material properties and manufacturing process capabilities, CNC machining of Nylon 6/6 satisfies these requirements. We present a novel parametric foot architecture that can be CNC machined, fits within a commercial foot shell, and can be designed for individual users' body characteristics and activity levels. Prototypes made using the new foot design behaved as anticipated (1-12% error in modeled displacement), satisfied industry-standard strength (ISO 10328) and mechanical performance (AOPA dynamic heel/keel) requirements, and elicited positive feedback from both amputees and prosthetists.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064073\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064073","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Design and mechanical validation of commercially viable, personalized passive prosthetic feet
Current high-performance prosthetic feet work well for many users, but the low resolution of size and stiffness categories may limit walking performance for certain users. A line of prosthetic feet with a high resolution of sizes and stiffnesses, designed through amputee-specific personalization, could provide clinical and economic value. The lower leg trajectory error (LLTE) design framework facilitates the design of high-performance, amputee-specific prosthetic feet; however, previous foot prototypes were not designed to satisfy the economic, mechanical, and aesthetic requirements for commercial adoption. The aims of this work were to understand how a personalized, affordable prosthetic foot can align with the clinical-commercial ecosystem, innovate a viable future product, and inform other prosthesis designers of considerations required to connect innovation to real-world implementation. We evaluated needs by identifying how products, capital, and services flow between stakeholders, and we elucidated design requirements for a personalized prosthetic foot that can be manufactured, dis- tributed, and clinically provided. Based on material properties and manufacturing process capabilities, CNC machining of Nylon 6/6 satisfies these requirements. We present a novel parametric foot architecture that can be CNC machined, fits within a commercial foot shell, and can be designed for individual users' body characteristics and activity levels. Prototypes made using the new foot design behaved as anticipated (1-12% error in modeled displacement), satisfied industry-standard strength (ISO 10328) and mechanical performance (AOPA dynamic heel/keel) requirements, and elicited positive feedback from both amputees and prosthetists.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.