模糊逻辑和机器学习方法在检测肝炎疾病中的比较

Cengiz Çoşkun, Emre Yüksek
{"title":"模糊逻辑和机器学习方法在检测肝炎疾病中的比较","authors":"Cengiz Çoşkun, Emre Yüksek","doi":"10.24012/dumf.1319102","DOIUrl":null,"url":null,"abstract":"Yaygın bir karaciğer rahatsızlığı olan hepatit, dünya çapında önemli halk sağlığı sorunlarından biridir. Klinik verilerin doğru yorumlanması, hepatit tanısının yapılabilmesi için ele alınması gereken en önemli sorunlardan birisidir. Bu çalışmada, ölümcül hepatit hastalığının tanısı için öznitelik seçimi yöntemi uygulanarak, bulanık modelleme ile çeşitli makine öğrenmesi yöntemlerinin hastalık tespitindeki başarısı karşılaştırılmıştır. Çalışmada UCI makine öğrenimi deposundan edinilen hepatit veri seti kullanılmıştır. Kullanılan veri seti ilk olarak veri ön işlemeden geçirilmiş, sınıflandırma başarısının artırılması için öznitelik seçimi ile veri setindeki özellik sayısı azaltılmıştır. Özellik sayısı azaltılan veri seti kullanılarak bulanık model ve makine öğrenmesi modelleri denenmiştir. Elde edilen sonuçlar çeşitli metrikler kullanılarak değerlendirilmiştir. Yapılan çalışmalar sonucunda Bulanık Mantık yöntemi ile doğruluk %94 olurken, Gradient Boosting algoritması ile doğruluk, kesinlik, duyarlılık ve f-skor metriği açısından sırasıyla %98.36, %98.68, %98.95 ve %98.91 olarak hesaplanmıştır. Elde edilen sonuçlar, hepatit hastalığının teşhisinde makine öğrenmesi yöntemlerinden Gradient Boosting yönteminin diğer makine öğrenme yöntemlerine ve bulanık yaklaşıma göre daha başarılı olduğu görülmüştür.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"23 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatit hastalığının tespitinde bulanık mantık ve makine öğrenmesi yöntemlerinin karşılaştırılması\",\"authors\":\"Cengiz Çoşkun, Emre Yüksek\",\"doi\":\"10.24012/dumf.1319102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yaygın bir karaciğer rahatsızlığı olan hepatit, dünya çapında önemli halk sağlığı sorunlarından biridir. Klinik verilerin doğru yorumlanması, hepatit tanısının yapılabilmesi için ele alınması gereken en önemli sorunlardan birisidir. Bu çalışmada, ölümcül hepatit hastalığının tanısı için öznitelik seçimi yöntemi uygulanarak, bulanık modelleme ile çeşitli makine öğrenmesi yöntemlerinin hastalık tespitindeki başarısı karşılaştırılmıştır. Çalışmada UCI makine öğrenimi deposundan edinilen hepatit veri seti kullanılmıştır. Kullanılan veri seti ilk olarak veri ön işlemeden geçirilmiş, sınıflandırma başarısının artırılması için öznitelik seçimi ile veri setindeki özellik sayısı azaltılmıştır. Özellik sayısı azaltılan veri seti kullanılarak bulanık model ve makine öğrenmesi modelleri denenmiştir. Elde edilen sonuçlar çeşitli metrikler kullanılarak değerlendirilmiştir. Yapılan çalışmalar sonucunda Bulanık Mantık yöntemi ile doğruluk %94 olurken, Gradient Boosting algoritması ile doğruluk, kesinlik, duyarlılık ve f-skor metriği açısından sırasıyla %98.36, %98.68, %98.95 ve %98.91 olarak hesaplanmıştır. Elde edilen sonuçlar, hepatit hastalığının teşhisinde makine öğrenmesi yöntemlerinden Gradient Boosting yönteminin diğer makine öğrenme yöntemlerine ve bulanık yaklaşıma göre daha başarılı olduğu görülmüştür.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"23 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1319102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1319102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肝炎是一种常见的肝脏疾病,是全球主要的公共卫生问题之一。正确解读临床数据是诊断肝炎需要解决的最重要问题之一。在本研究中,通过应用特征选择方法诊断致命性肝炎疾病,比较了模糊建模和各种机器学习方法在疾病检测方面的成功案例。研究中使用了从加州大学洛杉矶分校机器学习库中获得的肝炎数据集。首先对数据集进行数据预处理,并通过特征选择减少数据集中的特征数量,以提高分类成功率。使用减少了特征数量的数据集测试了模糊模型和机器学习模型。使用各种指标对所获得的结果进行了评估。研究结果显示,模糊逻辑方法的准确率为 94%,而梯度提升算法在准确率、精确度、灵敏度和 f-score 指标方面的准确率分别为 98.36%、98.68%、98.95% 和 98.91%。结果表明,在诊断肝炎疾病方面,机器学习方法之一的梯度提升法比其他机器学习方法和模糊方法更成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hepatit hastalığının tespitinde bulanık mantık ve makine öğrenmesi yöntemlerinin karşılaştırılması
Yaygın bir karaciğer rahatsızlığı olan hepatit, dünya çapında önemli halk sağlığı sorunlarından biridir. Klinik verilerin doğru yorumlanması, hepatit tanısının yapılabilmesi için ele alınması gereken en önemli sorunlardan birisidir. Bu çalışmada, ölümcül hepatit hastalığının tanısı için öznitelik seçimi yöntemi uygulanarak, bulanık modelleme ile çeşitli makine öğrenmesi yöntemlerinin hastalık tespitindeki başarısı karşılaştırılmıştır. Çalışmada UCI makine öğrenimi deposundan edinilen hepatit veri seti kullanılmıştır. Kullanılan veri seti ilk olarak veri ön işlemeden geçirilmiş, sınıflandırma başarısının artırılması için öznitelik seçimi ile veri setindeki özellik sayısı azaltılmıştır. Özellik sayısı azaltılan veri seti kullanılarak bulanık model ve makine öğrenmesi modelleri denenmiştir. Elde edilen sonuçlar çeşitli metrikler kullanılarak değerlendirilmiştir. Yapılan çalışmalar sonucunda Bulanık Mantık yöntemi ile doğruluk %94 olurken, Gradient Boosting algoritması ile doğruluk, kesinlik, duyarlılık ve f-skor metriği açısından sırasıyla %98.36, %98.68, %98.95 ve %98.91 olarak hesaplanmıştır. Elde edilen sonuçlar, hepatit hastalığının teşhisinde makine öğrenmesi yöntemlerinden Gradient Boosting yönteminin diğer makine öğrenme yöntemlerine ve bulanık yaklaşıma göre daha başarılı olduğu görülmüştür.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1