假手控制透视:从大脑到手

C. Gentile, E. Gruppioni
{"title":"假手控制透视:从大脑到手","authors":"C. Gentile, E. Gruppioni","doi":"10.3390/prosthesis5040083","DOIUrl":null,"url":null,"abstract":"The human hand is a complex and versatile organ that enables humans to interact with the environment, communicate, create, and use tools. The control of the hand by the brain is a crucial aspect of human cognition and behaviour, but also a challenging problem for both neuroscience and engineering. The aim of this study is to review the current state of the art in hand and grasp control from a neuroscientific perspective, focusing on the brain mechanisms that underlie sensory integration for hand control and the engineering implications for developing artificial hands that can mimic and interface with the human brain. The brain controls the hand by processing and integrating sensory information from vision, proprioception, and touch, using different neural pathways. The user’s intention can be obtained to control the artificial hand by using different interfaces, such as electromyography, electroneurography, and electroencephalography. This and other sensory information can be exploited by different learning mechanisms that can help the user adapt to changes in sensory inputs or outputs, such as reinforcement learning, motor adaptation, and internal models. This work summarizes the main findings and challenges of each aspect of hand and grasp control research and highlights the gaps and limitations of the current approaches. In the last part, some open questions and future directions for hand and grasp control research are suggested by emphasizing the need for a neuroscientific approach that can bridge the gap between the brain and the hand.","PeriodicalId":506748,"journal":{"name":"Prosthesis","volume":"30 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Perspective on Prosthetic Hands Control: From the Brain to the Hand\",\"authors\":\"C. Gentile, E. Gruppioni\",\"doi\":\"10.3390/prosthesis5040083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human hand is a complex and versatile organ that enables humans to interact with the environment, communicate, create, and use tools. The control of the hand by the brain is a crucial aspect of human cognition and behaviour, but also a challenging problem for both neuroscience and engineering. The aim of this study is to review the current state of the art in hand and grasp control from a neuroscientific perspective, focusing on the brain mechanisms that underlie sensory integration for hand control and the engineering implications for developing artificial hands that can mimic and interface with the human brain. The brain controls the hand by processing and integrating sensory information from vision, proprioception, and touch, using different neural pathways. The user’s intention can be obtained to control the artificial hand by using different interfaces, such as electromyography, electroneurography, and electroencephalography. This and other sensory information can be exploited by different learning mechanisms that can help the user adapt to changes in sensory inputs or outputs, such as reinforcement learning, motor adaptation, and internal models. This work summarizes the main findings and challenges of each aspect of hand and grasp control research and highlights the gaps and limitations of the current approaches. In the last part, some open questions and future directions for hand and grasp control research are suggested by emphasizing the need for a neuroscientific approach that can bridge the gap between the brain and the hand.\",\"PeriodicalId\":506748,\"journal\":{\"name\":\"Prosthesis\",\"volume\":\"30 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prosthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/prosthesis5040083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prosthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/prosthesis5040083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类的手是一个复杂而多用途的器官,它使人类能够与环境互动、交流、创造和使用工具。大脑对手的控制是人类认知和行为的一个重要方面,同时也是神经科学和工程学面临的一个挑战性问题。本研究旨在从神经科学的角度回顾手和抓握控制领域的最新研究成果,重点关注手部控制的感官整合所依赖的大脑机制,以及开发可模仿人脑并与人脑接口的人工手的工程学意义。大脑通过不同的神经通路处理和整合来自视觉、本体感觉和触觉的感觉信息来控制手。通过使用肌电图、神经电图和脑电图等不同接口,可以获得用户的意图,从而控制人工手。不同的学习机制(如强化学习、运动适应和内部模型)可以利用这些信息和其他感官信息,帮助用户适应感官输入或输出的变化。这项工作总结了手和抓握控制研究各方面的主要发现和挑战,并强调了当前方法的差距和局限性。最后,通过强调神经科学方法的必要性,提出了手和抓握控制研究的一些开放性问题和未来方向,从而在大脑和手之间架起一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Perspective on Prosthetic Hands Control: From the Brain to the Hand
The human hand is a complex and versatile organ that enables humans to interact with the environment, communicate, create, and use tools. The control of the hand by the brain is a crucial aspect of human cognition and behaviour, but also a challenging problem for both neuroscience and engineering. The aim of this study is to review the current state of the art in hand and grasp control from a neuroscientific perspective, focusing on the brain mechanisms that underlie sensory integration for hand control and the engineering implications for developing artificial hands that can mimic and interface with the human brain. The brain controls the hand by processing and integrating sensory information from vision, proprioception, and touch, using different neural pathways. The user’s intention can be obtained to control the artificial hand by using different interfaces, such as electromyography, electroneurography, and electroencephalography. This and other sensory information can be exploited by different learning mechanisms that can help the user adapt to changes in sensory inputs or outputs, such as reinforcement learning, motor adaptation, and internal models. This work summarizes the main findings and challenges of each aspect of hand and grasp control research and highlights the gaps and limitations of the current approaches. In the last part, some open questions and future directions for hand and grasp control research are suggested by emphasizing the need for a neuroscientific approach that can bridge the gap between the brain and the hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long-Term Results of Third Generation of Rotating Hinge Arthroplasty in Patients with Poliomyelitis Analysis of Early-Retrieved Dual-Mobility Polyethylene Liners for Total Hip Replacement Clinical Effects of Interproximal Contact Loss between Teeth and Implant-Supported Prostheses: Systematic Review and Meta-Analysis Mortality Rate in Periprosthetic Proximal Femoral Fractures: Impact of Time to Surgery Implant-Prosthetic Rehabilitation of the Agenesis of Maxillary Lateral Incisors: A 2-Year Prospective Clinical Study with Full Digital Workflow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1