{"title":"基于 DSV-CDRM 的深度语义级跨域推荐模型","authors":"Xuewei Lai, Qingqing Jie","doi":"10.4018/ijitwe.333639","DOIUrl":null,"url":null,"abstract":"A deep semantic-level cross-domain recommendation model based on DSV-CDRM is proposed to address the problems of existing methods such as single modeling approach. First, review information is converted into word vectors using a TinyBERT pre-trained language model, and then two global deep semantic viewpoint matrices are used in conjunction with a gating mechanism to guide queries. An additional convolutional layer is added on top of the improved text convolution to construct auxiliary documents using similar but non-overlapping user comments. Finally, correlations between deep semantic viewpoints between different domains are learned by constructing a correlation matrix and performing semantic matching. Experiments on the Amazon public dataset demonstrate that the proposed method outperforms existing models in both MAE and MSE, and it can effectively improve the performance of cross-domain recommendation system.","PeriodicalId":51925,"journal":{"name":"International Journal of Information Technology and Web Engineering","volume":"66 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Semantic-Level Cross-Domain Recommendation Model Based on DSV-CDRM\",\"authors\":\"Xuewei Lai, Qingqing Jie\",\"doi\":\"10.4018/ijitwe.333639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep semantic-level cross-domain recommendation model based on DSV-CDRM is proposed to address the problems of existing methods such as single modeling approach. First, review information is converted into word vectors using a TinyBERT pre-trained language model, and then two global deep semantic viewpoint matrices are used in conjunction with a gating mechanism to guide queries. An additional convolutional layer is added on top of the improved text convolution to construct auxiliary documents using similar but non-overlapping user comments. Finally, correlations between deep semantic viewpoints between different domains are learned by constructing a correlation matrix and performing semantic matching. Experiments on the Amazon public dataset demonstrate that the proposed method outperforms existing models in both MAE and MSE, and it can effectively improve the performance of cross-domain recommendation system.\",\"PeriodicalId\":51925,\"journal\":{\"name\":\"International Journal of Information Technology and Web Engineering\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Web Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.333639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Web Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.333639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
针对现有方法(如单一建模方法)存在的问题,提出了一种基于 DSV-CDRM 的深度语义级跨域推荐模型。首先,使用 TinyBERT 预训练语言模型将评论信息转换为单词向量,然后使用两个全局深度语义观点矩阵结合门控机制来引导查询。在改进文本卷积的基础上增加一个卷积层,利用相似但不重叠的用户评论构建辅助文档。最后,通过构建相关矩阵和执行语义匹配,学习不同领域之间深层语义观点的相关性。在亚马逊公共数据集上的实验表明,所提出的方法在 MAE 和 MSE 方面都优于现有模型,能有效提高跨领域推荐系统的性能。
Deep Semantic-Level Cross-Domain Recommendation Model Based on DSV-CDRM
A deep semantic-level cross-domain recommendation model based on DSV-CDRM is proposed to address the problems of existing methods such as single modeling approach. First, review information is converted into word vectors using a TinyBERT pre-trained language model, and then two global deep semantic viewpoint matrices are used in conjunction with a gating mechanism to guide queries. An additional convolutional layer is added on top of the improved text convolution to construct auxiliary documents using similar but non-overlapping user comments. Finally, correlations between deep semantic viewpoints between different domains are learned by constructing a correlation matrix and performing semantic matching. Experiments on the Amazon public dataset demonstrate that the proposed method outperforms existing models in both MAE and MSE, and it can effectively improve the performance of cross-domain recommendation system.
期刊介绍:
Organizations are continuously overwhelmed by a variety of new information technologies, many are Web based. These new technologies are capitalizing on the widespread use of network and communication technologies for seamless integration of various issues in information and knowledge sharing within and among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross platform and multidisciplinary strategy to research and practice.