{"title":"循环荷载下钢板剪力墙中钢板与 CFRP 连接处分离的实验研究","authors":"Said Dusak, C. Yalçin","doi":"10.24012/dumf.1358193","DOIUrl":null,"url":null,"abstract":"Steel plate shear walls, as an innovative lateral load resisting system, are widely used in the world. In this study, carbon fiber-reinforced polymer textile (CFRP) is used in order to increase load carrying capacity, ductility and energy dissipation of steel plate shear walls. A specimen of composite plate shear wall through epoxy bonding between two steel plates in a steel frame was prepared, and cyclic loading was applied. The finite element model of the steel plate shear wall without CFRP textile was prepared, and an in-plane static pushover analysis was conducted. The load-displacement curves obtained from the analysis of the model were compared with the results of the experimentally-obtained CFRP textile added specimen, and they were found to be in a good agreement. In conclusion, as a result of the addition of CFRP textile to the steel plate shear wall, it was observed that the carbon fiber reinforced polymer delaminated from the plate surface, and its contribution to the system behavior remained limited. Accordingly, it has been observed that in order to obtain the expected contribution, it is necessary to ensure that the steel plate and the textile must have full bonding and act as a composite material.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ÇEVRİMSEL YÜKLER ALTINDA CFRP İLE GÜÇLENDİRİLMİŞ ÇELİK LEVHALI PERDELERDE ÇELİK LEVHA İLE CFRP ARASINDAKİ BİRLEŞİMİN AYRILMASININ DENEYSEL İNCELENMESİ\",\"authors\":\"Said Dusak, C. Yalçin\",\"doi\":\"10.24012/dumf.1358193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steel plate shear walls, as an innovative lateral load resisting system, are widely used in the world. In this study, carbon fiber-reinforced polymer textile (CFRP) is used in order to increase load carrying capacity, ductility and energy dissipation of steel plate shear walls. A specimen of composite plate shear wall through epoxy bonding between two steel plates in a steel frame was prepared, and cyclic loading was applied. The finite element model of the steel plate shear wall without CFRP textile was prepared, and an in-plane static pushover analysis was conducted. The load-displacement curves obtained from the analysis of the model were compared with the results of the experimentally-obtained CFRP textile added specimen, and they were found to be in a good agreement. In conclusion, as a result of the addition of CFRP textile to the steel plate shear wall, it was observed that the carbon fiber reinforced polymer delaminated from the plate surface, and its contribution to the system behavior remained limited. Accordingly, it has been observed that in order to obtain the expected contribution, it is necessary to ensure that the steel plate and the textile must have full bonding and act as a composite material.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1358193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1358193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Steel plate shear walls, as an innovative lateral load resisting system, are widely used in the world. In this study, carbon fiber-reinforced polymer textile (CFRP) is used in order to increase load carrying capacity, ductility and energy dissipation of steel plate shear walls. A specimen of composite plate shear wall through epoxy bonding between two steel plates in a steel frame was prepared, and cyclic loading was applied. The finite element model of the steel plate shear wall without CFRP textile was prepared, and an in-plane static pushover analysis was conducted. The load-displacement curves obtained from the analysis of the model were compared with the results of the experimentally-obtained CFRP textile added specimen, and they were found to be in a good agreement. In conclusion, as a result of the addition of CFRP textile to the steel plate shear wall, it was observed that the carbon fiber reinforced polymer delaminated from the plate surface, and its contribution to the system behavior remained limited. Accordingly, it has been observed that in order to obtain the expected contribution, it is necessary to ensure that the steel plate and the textile must have full bonding and act as a composite material.