使用 BERT 对版本说明进行分类:分布式软件开发中自动版本控制的第一步

Abdulkadir Seker
{"title":"使用 BERT 对版本说明进行分类:分布式软件开发中自动版本控制的第一步","authors":"Abdulkadir Seker","doi":"10.24012/dumf.1345893","DOIUrl":null,"url":null,"abstract":"Distributed Software Development is the practice of developing software with a team in different locations. The process of software versioning is crucial in distributed development as it helps in keeping track of the various software versions that are being developed and maintaining projects. In transition of each new version, the development team present release notes that inform all team members and stakeholders are aware of changes and provide tracking project progresses. Release notes consist information about the features, bug fixes, and other changes included in a new software release. Generating release notes and determining the release transition timing for new software versions can be costly. Despite of there are some papers about generating release notes in the literature, there is not any study about automatic versioning. In this context, the aim of this paper is to predict the development types in release notes as the first phase of an automated versioning tool that is planned to be built in future work. We used BERT which is one of the popular transformers to classify developments of release notes and our model has 86% accuracy rate on our own public dataset. Additionally, we presented insights on the model's decision-making process in the context of explainable AI using ELI5 library.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying Release Notes Explanations using BERT: An Initial Step to Automatic Versioning in Distributed Software Development\",\"authors\":\"Abdulkadir Seker\",\"doi\":\"10.24012/dumf.1345893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed Software Development is the practice of developing software with a team in different locations. The process of software versioning is crucial in distributed development as it helps in keeping track of the various software versions that are being developed and maintaining projects. In transition of each new version, the development team present release notes that inform all team members and stakeholders are aware of changes and provide tracking project progresses. Release notes consist information about the features, bug fixes, and other changes included in a new software release. Generating release notes and determining the release transition timing for new software versions can be costly. Despite of there are some papers about generating release notes in the literature, there is not any study about automatic versioning. In this context, the aim of this paper is to predict the development types in release notes as the first phase of an automated versioning tool that is planned to be built in future work. We used BERT which is one of the popular transformers to classify developments of release notes and our model has 86% accuracy rate on our own public dataset. Additionally, we presented insights on the model's decision-making process in the context of explainable AI using ELI5 library.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1345893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1345893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式软件开发是指团队在不同地点开发软件的做法。软件版本化过程在分布式开发中至关重要,因为它有助于跟踪正在开发和维护项目的各种软件版本。在每个新版本的过渡阶段,开发团队都会提交发布说明,让所有团队成员和利益相关者了解变更情况,并跟踪项目进展。发布说明包括新软件版本中的功能、错误修复和其他变更信息。生成发布说明和确定新软件版本的发布过渡时间可能会耗费大量成本。尽管文献中有一些关于生成发布说明的论文,但还没有任何关于自动版本控制的研究。在这种情况下,本文的目的是预测发布说明中的开发类型,作为计划在未来工作中构建的自动版本管理工具的第一阶段。我们使用 BERT(一种流行的转换器)对发布说明中的开发进行分类,我们的模型在自己的公开数据集上的准确率达到了 86%。此外,我们还利用 ELI5 库介绍了模型在可解释人工智能背景下的决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying Release Notes Explanations using BERT: An Initial Step to Automatic Versioning in Distributed Software Development
Distributed Software Development is the practice of developing software with a team in different locations. The process of software versioning is crucial in distributed development as it helps in keeping track of the various software versions that are being developed and maintaining projects. In transition of each new version, the development team present release notes that inform all team members and stakeholders are aware of changes and provide tracking project progresses. Release notes consist information about the features, bug fixes, and other changes included in a new software release. Generating release notes and determining the release transition timing for new software versions can be costly. Despite of there are some papers about generating release notes in the literature, there is not any study about automatic versioning. In this context, the aim of this paper is to predict the development types in release notes as the first phase of an automated versioning tool that is planned to be built in future work. We used BERT which is one of the popular transformers to classify developments of release notes and our model has 86% accuracy rate on our own public dataset. Additionally, we presented insights on the model's decision-making process in the context of explainable AI using ELI5 library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1