瞬时控制压降质构对黄粉虫干燥的影响

IF 4.7 3区 农林科学 Q1 ENTOMOLOGY Journal of Insects as Food and Feed Pub Date : 2023-09-29 DOI:10.1163/23524588-20230027
R. El Hajj, H. Mhemdi, S. Khashayar, V. Lefrançois, K. Allaf, E. Vorobiev
{"title":"瞬时控制压降质构对黄粉虫干燥的影响","authors":"R. El Hajj, H. Mhemdi, S. Khashayar, V. Lefrançois, K. Allaf, E. Vorobiev","doi":"10.1163/23524588-20230027","DOIUrl":null,"url":null,"abstract":"Insects are increasingly being evaluated as promising protein sources for the food and feed sectors. However, to be accepted as a viable food source, insects must undergo proper processing. Drying is a crucial step in insect processing, as it inhibits the growth of harmful microorganisms, improves their stability and extends their shelf life. After drying, insects can be further processed into various forms, to make them more socially acceptable as food and feed. During drying, biological materials are prone to shrinking, which usually affects their quality. Shrinkage of dried biological material results in a compact structure and causes a significant reduction in water diffusivity. It is typically escorted with unsatisfactory organoleptic quality and problems with grinding. Therefore, including retexturing and structure-expanding techniques in regular drying procedures is becoming essential. The instant controlled pressure drop (DIC) technique was suggested as a texturing technique for yellow mealworms. DIC treatment successfully overcame shrinkage at treatment conditions of 0.194 MPa/32 s and above, resulting in enhanced water diffusivity of 1,833 and 682% for DIC-treated larvae at 0.45 MPa/25 s, dried at 50 and 60 °C, respectively, as compared to blanched larvae. Furthermore, DIC caused a 125% increase in the specific surface area of the dried meal, and a more uniform particle size distribution, both of which reflect the influence of this pretreatment on grinding and, consequently, the end product’s quality. Finally, experimental data of sorption isotherms at 20, 30, and 40 °C were fitted with Brunauer-Emmett-Teller (BET), Guggenheim-Anderson-de Boer (GAB), and Oswin models to represent the sorption behaviour.","PeriodicalId":48604,"journal":{"name":"Journal of Insects as Food and Feed","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of instant controlled pressure drop texturing on the drying of yellow mealworms\",\"authors\":\"R. El Hajj, H. Mhemdi, S. Khashayar, V. Lefrançois, K. Allaf, E. Vorobiev\",\"doi\":\"10.1163/23524588-20230027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insects are increasingly being evaluated as promising protein sources for the food and feed sectors. However, to be accepted as a viable food source, insects must undergo proper processing. Drying is a crucial step in insect processing, as it inhibits the growth of harmful microorganisms, improves their stability and extends their shelf life. After drying, insects can be further processed into various forms, to make them more socially acceptable as food and feed. During drying, biological materials are prone to shrinking, which usually affects their quality. Shrinkage of dried biological material results in a compact structure and causes a significant reduction in water diffusivity. It is typically escorted with unsatisfactory organoleptic quality and problems with grinding. Therefore, including retexturing and structure-expanding techniques in regular drying procedures is becoming essential. The instant controlled pressure drop (DIC) technique was suggested as a texturing technique for yellow mealworms. DIC treatment successfully overcame shrinkage at treatment conditions of 0.194 MPa/32 s and above, resulting in enhanced water diffusivity of 1,833 and 682% for DIC-treated larvae at 0.45 MPa/25 s, dried at 50 and 60 °C, respectively, as compared to blanched larvae. Furthermore, DIC caused a 125% increase in the specific surface area of the dried meal, and a more uniform particle size distribution, both of which reflect the influence of this pretreatment on grinding and, consequently, the end product’s quality. Finally, experimental data of sorption isotherms at 20, 30, and 40 °C were fitted with Brunauer-Emmett-Teller (BET), Guggenheim-Anderson-de Boer (GAB), and Oswin models to represent the sorption behaviour.\",\"PeriodicalId\":48604,\"journal\":{\"name\":\"Journal of Insects as Food and Feed\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insects as Food and Feed\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1163/23524588-20230027\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insects as Food and Feed","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1163/23524588-20230027","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

昆虫正越来越多地被评估为食品和饲料行业有前景的蛋白质来源。然而,昆虫必须经过适当加工才能被接受为可行的食物来源。干燥是昆虫加工的关键步骤,因为它可以抑制有害微生物的生长,提高昆虫的稳定性,延长其保质期。干燥后,昆虫还可以进一步加工成各种形态,使其更容易被社会接受,成为食品和饲料。在干燥过程中,生物材料容易收缩,这通常会影响其质量。干燥生物材料的收缩会导致结构紧凑,并显著降低水的扩散性。这通常会导致感官质量不佳和研磨问题。因此,在常规干燥程序中加入重构和结构扩展技术变得至关重要。有人建议将瞬间控制压降(DIC)技术作为黄粉虫的质构技术。在 0.194 兆帕/32 秒及以上的处理条件下,DIC 处理成功地克服了收缩问题,在 0.45 兆帕/25 秒的条件下,DIC 处理过的幼虫在 50 ℃ 和 60 ℃ 干燥时的水扩散率分别比焯过的幼虫提高了 1,833% 和 682%。此外,DIC 使干粉的比表面积增加了 125%,粒度分布更加均匀,这两点都反映了这种预处理对研磨的影响,进而影响最终产品的质量。最后,用布鲁纳-埃美特-泰勒(BET)、古根海姆-安德森-德布尔(GAB)和奥斯温模型拟合了 20、30 和 40 °C 下的吸附等温线实验数据,以表示吸附行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of instant controlled pressure drop texturing on the drying of yellow mealworms
Insects are increasingly being evaluated as promising protein sources for the food and feed sectors. However, to be accepted as a viable food source, insects must undergo proper processing. Drying is a crucial step in insect processing, as it inhibits the growth of harmful microorganisms, improves their stability and extends their shelf life. After drying, insects can be further processed into various forms, to make them more socially acceptable as food and feed. During drying, biological materials are prone to shrinking, which usually affects their quality. Shrinkage of dried biological material results in a compact structure and causes a significant reduction in water diffusivity. It is typically escorted with unsatisfactory organoleptic quality and problems with grinding. Therefore, including retexturing and structure-expanding techniques in regular drying procedures is becoming essential. The instant controlled pressure drop (DIC) technique was suggested as a texturing technique for yellow mealworms. DIC treatment successfully overcame shrinkage at treatment conditions of 0.194 MPa/32 s and above, resulting in enhanced water diffusivity of 1,833 and 682% for DIC-treated larvae at 0.45 MPa/25 s, dried at 50 and 60 °C, respectively, as compared to blanched larvae. Furthermore, DIC caused a 125% increase in the specific surface area of the dried meal, and a more uniform particle size distribution, both of which reflect the influence of this pretreatment on grinding and, consequently, the end product’s quality. Finally, experimental data of sorption isotherms at 20, 30, and 40 °C were fitted with Brunauer-Emmett-Teller (BET), Guggenheim-Anderson-de Boer (GAB), and Oswin models to represent the sorption behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Insects as Food and Feed
Journal of Insects as Food and Feed Agricultural and Biological Sciences-Insect Science
CiteScore
7.00
自引率
17.60%
发文量
133
期刊介绍: The Journal of Insects as Food and Feed covers edible insects from harvesting in the wild through to industrial scale production. It publishes contributions to understanding the ecology and biology of edible insects and the factors that determine their abundance, the importance of food insects in people’s livelihoods, the value of ethno-entomological knowledge, and the role of technology transfer to assist people to utilise traditional knowledge to improve the value of insect foods in their lives. The journal aims to cover the whole chain of insect collecting or rearing to marketing edible insect products, including the development of sustainable technology, such as automation processes at affordable costs, detection, identification and mitigating of microbial contaminants, development of protocols for quality control, processing methodologies and how they affect digestibility and nutritional composition of insects, and the potential of insects to transform low value organic wastes into high protein products. At the end of the edible insect food or feed chain, marketing issues, consumer acceptance, regulation and legislation pose new research challenges. Food safety and legislation are intimately related. Consumer attitude is strongly dependent on the perceived safety. Microbial safety, toxicity due to chemical contaminants, and allergies are important issues in safety of insects as food and feed. Innovative contributions that address the multitude of aspects relevant for the utilisation of insects in increasing food and feed quality, safety and security are welcomed.
期刊最新文献
Nutrient profiles and browning control of wasp larvae Prospects of using insects as alternative protein sources in broiler diets Growth, nutrient uptake, blood metabolites and bone properties in broilers consuming feed with mineral-enriched whole black soldier fly larvae Attenuated-total-reflection Fourier-transformed spectroscopy as a rapid tool to reveal the molecular structure of insect powders as ingredients for animal feeds Interaction effects of substrate fermentation and larval density on black soldier fly life-history traits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1