分析在能量高温计中使用积分辐射系数的方法

A. Shilin, B. V. Mac, I. A. Koptelova
{"title":"分析在能量高温计中使用积分辐射系数的方法","authors":"A. Shilin, B. V. Mac, I. A. Koptelova","doi":"10.14489/td.2023.09.pp.042-048","DOIUrl":null,"url":null,"abstract":"The principle of operation of energy pyrometers for measuring the temperature of heated products is based on measuring the radiation flux from a heated product, which depends not only on the temperature of the object, but also on the emissivity of the surface of the material. The main error of such pyrometers is the methodological component, which is due to the variability of the radiation coefficient of the surface of the product material. In practice, the radiation coefficient of the surface of the material of the product is determined approximately using reference books. It should be noted that the radiation coefficient theoretically depends on the wavelength and temperature, and reference books give dependences on only one parameter, and in different reference books for the same material, the dependences differ. In addition, when using spectral dependences, it is necessary to take into account the spectral characteristics of all elements of the optoelectronic path. So, the use of this method limits the accuracy of temperature measurement. For a more accurate determination of the radiation coefficient, a preliminary study is required, which requires more sophisticated equipment than a pyrometer. In the article, an analysis was made of the errors in determining the temperature using the average value of the radiation coefficient. To improve the accuracy of measuring the temperature of an object, a device was developed that implements the method of exemplary signals and uses the average value of the radiation coefficient. The developed device preliminarily determines the dependence of the average value of the emissivity on temperature, and when working, it determines the temperature of the part based on the results of measurements with a pyrometer and the dependence.","PeriodicalId":432853,"journal":{"name":"Kontrol'. Diagnostika","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF THE METHODOLOGY FOR USING THE INTEGRAL RADIATION COEFFICIENT IN ENERGY PYROMETERS\",\"authors\":\"A. Shilin, B. V. Mac, I. A. Koptelova\",\"doi\":\"10.14489/td.2023.09.pp.042-048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principle of operation of energy pyrometers for measuring the temperature of heated products is based on measuring the radiation flux from a heated product, which depends not only on the temperature of the object, but also on the emissivity of the surface of the material. The main error of such pyrometers is the methodological component, which is due to the variability of the radiation coefficient of the surface of the product material. In practice, the radiation coefficient of the surface of the material of the product is determined approximately using reference books. It should be noted that the radiation coefficient theoretically depends on the wavelength and temperature, and reference books give dependences on only one parameter, and in different reference books for the same material, the dependences differ. In addition, when using spectral dependences, it is necessary to take into account the spectral characteristics of all elements of the optoelectronic path. So, the use of this method limits the accuracy of temperature measurement. For a more accurate determination of the radiation coefficient, a preliminary study is required, which requires more sophisticated equipment than a pyrometer. In the article, an analysis was made of the errors in determining the temperature using the average value of the radiation coefficient. To improve the accuracy of measuring the temperature of an object, a device was developed that implements the method of exemplary signals and uses the average value of the radiation coefficient. The developed device preliminarily determines the dependence of the average value of the emissivity on temperature, and when working, it determines the temperature of the part based on the results of measurements with a pyrometer and the dependence.\",\"PeriodicalId\":432853,\"journal\":{\"name\":\"Kontrol'. Diagnostika\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kontrol'. Diagnostika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14489/td.2023.09.pp.042-048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kontrol'. Diagnostika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14489/td.2023.09.pp.042-048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

测量加热产品温度的能量高温计的工作原理是测量来自加热产品的辐射通量,这不仅取决于物体的温度,还取决于材料表面的辐射率。这种高温计的主要误差是方法误差,是由于产品材料表面辐射系数的变化造成的。在实践中,产品材料表面的辐射系数是通过参考书近似确定的。需要注意的是,理论上辐射系数取决于波长和温度,而参考书只给出了一个参数的相关系数,在不同的参考书中,同一种材料的相关系数是不同的。此外,在使用光谱相关性时,必须考虑光电路径中所有元素的光谱特性。因此,使用这种方法会限制温度测量的准确性。为了更准确地确定辐射系数,需要进行初步研究,这需要比高温计更精密的设备。文章分析了使用辐射系数平均值测定温度的误差。为了提高测量物体温度的准确性,开发了一种实现示例信号法并使用辐射系数平均值的设备。所开发的装置可初步确定辐射率平均值与温度的关系,在工作时,可根据高温计的测量结果和该关系确定部件的温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANALYSIS OF THE METHODOLOGY FOR USING THE INTEGRAL RADIATION COEFFICIENT IN ENERGY PYROMETERS
The principle of operation of energy pyrometers for measuring the temperature of heated products is based on measuring the radiation flux from a heated product, which depends not only on the temperature of the object, but also on the emissivity of the surface of the material. The main error of such pyrometers is the methodological component, which is due to the variability of the radiation coefficient of the surface of the product material. In practice, the radiation coefficient of the surface of the material of the product is determined approximately using reference books. It should be noted that the radiation coefficient theoretically depends on the wavelength and temperature, and reference books give dependences on only one parameter, and in different reference books for the same material, the dependences differ. In addition, when using spectral dependences, it is necessary to take into account the spectral characteristics of all elements of the optoelectronic path. So, the use of this method limits the accuracy of temperature measurement. For a more accurate determination of the radiation coefficient, a preliminary study is required, which requires more sophisticated equipment than a pyrometer. In the article, an analysis was made of the errors in determining the temperature using the average value of the radiation coefficient. To improve the accuracy of measuring the temperature of an object, a device was developed that implements the method of exemplary signals and uses the average value of the radiation coefficient. The developed device preliminarily determines the dependence of the average value of the emissivity on temperature, and when working, it determines the temperature of the part based on the results of measurements with a pyrometer and the dependence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIAGNOSTICS OF INTERELECTRODE GAP’S CONDITION USING VIBROACOUSTIC EMISSION APPLICATION OF ACOUSTIC EMISSION METHOD FOR DETECTING DIFFUSION INTERLAYERS IN DIFFERENT WELDED JOINTS CALIBRATION OF THE PIEZOELECTRIC DYNAMOMETER KISTLER USING A MEASURING DEVICE BASED ON A SAMPLE COMPRESSION DYNAMOMETER TOPOLOGY OF MANUFACTURING A SORPTION-CAPACITIVE HUMIDITY SENSOR BASED ON THIN FILMS OBTAINED BY MICROARC OXIDATION AND MAGNETRON SPUTTERING INVESTIGATION OF THE TEMPERATURE ERROR OF COORDINATE MEASURING MACHINES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1