基于相似度量的熵超图中心性检测

Ihsan Tugal, Zeydin Pala
{"title":"基于相似度量的熵超图中心性检测","authors":"Ihsan Tugal, Zeydin Pala","doi":"10.24012/dumf.1241450","DOIUrl":null,"url":null,"abstract":"Hypergraphs and simplicial complexes can be used to model higher-order interactions. Graphs are limited to model and describe pairwise interactions. In this study, the issue of centrality in hypergraphs was studied. We introduce centrality measures based on the entropy of nodes and hyperedges in the hypergraphs. Until now, a lot of measures from various perspectives have been proposed to identify influential nodes, yet non provides a complete solution to the centrality problem. Because there are different perspectives on centrality. It is important to try different models to reach a solution in centrality problems. Entropy, which is a measure of uncertainty, is a guide in centrality measurements. It can produce ideal solutions for centrality. In complex systems, the entropy can be measured by different methods. In this study, the entropy calculation was made according to the union, intersection, and jaccard similarity values for nodes. The way that similarity is measured indicates the type of centrality. Local centralities were detected more precisely when the degree and union similarity values were used. The intersection and jaccard similarities showed us the global centralities. Traditional methods of centrality were also compared with the results of the proposed method. The accuracy of the method was tested with different hypergraph datasets. It has been shown that we can produce efficient results with different similarity parameters according to our wishes in hypergraphs.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzerlik Ölçülerine Dayalı Entropi ile Hipergraflarda Merkezilik Tespiti\",\"authors\":\"Ihsan Tugal, Zeydin Pala\",\"doi\":\"10.24012/dumf.1241450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypergraphs and simplicial complexes can be used to model higher-order interactions. Graphs are limited to model and describe pairwise interactions. In this study, the issue of centrality in hypergraphs was studied. We introduce centrality measures based on the entropy of nodes and hyperedges in the hypergraphs. Until now, a lot of measures from various perspectives have been proposed to identify influential nodes, yet non provides a complete solution to the centrality problem. Because there are different perspectives on centrality. It is important to try different models to reach a solution in centrality problems. Entropy, which is a measure of uncertainty, is a guide in centrality measurements. It can produce ideal solutions for centrality. In complex systems, the entropy can be measured by different methods. In this study, the entropy calculation was made according to the union, intersection, and jaccard similarity values for nodes. The way that similarity is measured indicates the type of centrality. Local centralities were detected more precisely when the degree and union similarity values were used. The intersection and jaccard similarities showed us the global centralities. Traditional methods of centrality were also compared with the results of the proposed method. The accuracy of the method was tested with different hypergraph datasets. It has been shown that we can produce efficient results with different similarity parameters according to our wishes in hypergraphs.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1241450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1241450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超图和简单复合物可用于模拟高阶相互作用。图形仅限于模拟和描述成对的相互作用。本研究对超图中的中心性问题进行了研究。我们引入了基于超图中节点和超门熵的中心性度量。到目前为止,人们已经从不同角度提出了很多识别有影响力节点的度量方法,但还没有一个方法能完全解决中心性问题。因为人们对中心性有不同的看法。因此,尝试不同的模型来解决中心性问题非常重要。熵是对不确定性的一种度量,是中心度测量的指南。它可以为中心度提供理想的解决方案。在复杂系统中,熵可以用不同的方法测量。在本研究中,熵的计算是根据节点的联合、交叉和 jaccard 相似度值进行的。测量相似性的方法表明了中心性的类型。使用度和联合相似度值时,能更精确地检测出局部中心性。而交集和 jaccard 相似性则向我们展示了全局中心性。传统的中心性方法也与所提出方法的结果进行了比较。我们使用不同的超图数据集测试了该方法的准确性。结果表明,在超图中,我们可以根据自己的意愿使用不同的相似性参数,从而获得高效的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benzerlik Ölçülerine Dayalı Entropi ile Hipergraflarda Merkezilik Tespiti
Hypergraphs and simplicial complexes can be used to model higher-order interactions. Graphs are limited to model and describe pairwise interactions. In this study, the issue of centrality in hypergraphs was studied. We introduce centrality measures based on the entropy of nodes and hyperedges in the hypergraphs. Until now, a lot of measures from various perspectives have been proposed to identify influential nodes, yet non provides a complete solution to the centrality problem. Because there are different perspectives on centrality. It is important to try different models to reach a solution in centrality problems. Entropy, which is a measure of uncertainty, is a guide in centrality measurements. It can produce ideal solutions for centrality. In complex systems, the entropy can be measured by different methods. In this study, the entropy calculation was made according to the union, intersection, and jaccard similarity values for nodes. The way that similarity is measured indicates the type of centrality. Local centralities were detected more precisely when the degree and union similarity values were used. The intersection and jaccard similarities showed us the global centralities. Traditional methods of centrality were also compared with the results of the proposed method. The accuracy of the method was tested with different hypergraph datasets. It has been shown that we can produce efficient results with different similarity parameters according to our wishes in hypergraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1