{"title":"微波辅助轻松合成掺杂 Ce 的 Bi2O3 以制造高效混合超级电容器","authors":"Xin Tao, Mingqi Wei, Lianghao Yu, Bocheng Zhuang, Linlin Zhang, Ruilin Zhu, Guangzhen Zhao, Lu Han, Yuanyuan Zhu, Huile Jin, Guang Zhu","doi":"10.1002/bte2.20230052","DOIUrl":null,"url":null,"abstract":"<p>Bismuth trioxide (BT) is considered a fascinating anode material for hybrid supercapacitors (HSCs) due to its high theoretical capacity, but the low conductivity limits further applications. With this in mind, Ce-doped Bi<sub>2</sub>O<sub>3</sub> (Ce-BT) nanoflower spheres were synthesized by a facile and rapid microwave-assisted solvothermal method for HSCs anode materials. It is found that the morphology of BT could be controlled by Ce doping from stacked nanosheets to well-dispersed nanoflowers spheres and producing abundant amorphous regions, thus expediting the ion transport rate. Consequently, when the added Bi to Ce molar ratio is 40:1 (Ce-BT-40), it exhibited a specific capacity of 220 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>. Additionally, when fabricating HSCs with as-prepared Ce-BT-40 and CeNiCo-LDH, an energy density of 59.1 Wh kg<sup>−1</sup> is provided at a power density of 652 W kg<sup>−1</sup>. This work not only reveals the mechanism of the effect of Ce doping on the electrochemical properties of BTs, but also proposes a rapid synthesis method of Ce-BTs by microwave-assisted solvent method, which provides new insights for building advanced HSCs with high energy density and low cost.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230052","citationCount":"0","resultStr":"{\"title\":\"Facile microwave-assisted synthesis of Ce-doped Bi2O3 for efficient hybrid supercapacitors\",\"authors\":\"Xin Tao, Mingqi Wei, Lianghao Yu, Bocheng Zhuang, Linlin Zhang, Ruilin Zhu, Guangzhen Zhao, Lu Han, Yuanyuan Zhu, Huile Jin, Guang Zhu\",\"doi\":\"10.1002/bte2.20230052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bismuth trioxide (BT) is considered a fascinating anode material for hybrid supercapacitors (HSCs) due to its high theoretical capacity, but the low conductivity limits further applications. With this in mind, Ce-doped Bi<sub>2</sub>O<sub>3</sub> (Ce-BT) nanoflower spheres were synthesized by a facile and rapid microwave-assisted solvothermal method for HSCs anode materials. It is found that the morphology of BT could be controlled by Ce doping from stacked nanosheets to well-dispersed nanoflowers spheres and producing abundant amorphous regions, thus expediting the ion transport rate. Consequently, when the added Bi to Ce molar ratio is 40:1 (Ce-BT-40), it exhibited a specific capacity of 220 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>. Additionally, when fabricating HSCs with as-prepared Ce-BT-40 and CeNiCo-LDH, an energy density of 59.1 Wh kg<sup>−1</sup> is provided at a power density of 652 W kg<sup>−1</sup>. This work not only reveals the mechanism of the effect of Ce doping on the electrochemical properties of BTs, but also proposes a rapid synthesis method of Ce-BTs by microwave-assisted solvent method, which provides new insights for building advanced HSCs with high energy density and low cost.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
三氧化二铋(BT)因其理论容量高而被认为是混合超级电容器(HSCs)的一种极具吸引力的阳极材料,但其低电导率限制了其进一步的应用。有鉴于此,研究人员采用简便快速的微波辅助溶热法合成了掺杂 Ce 的 Bi2O3(Ce-BT)纳米花球,并将其用于 HSCs 阳极材料。研究发现,掺杂 Ce 可以控制 BT 的形貌,使其从堆积的纳米片变成分散的纳米花球,并产生丰富的非晶区,从而加快离子传输速率。因此,当添加的 Bi 与 Ce 摩尔比为 40:1 时(Ce-BT-40),在 0.5 A g-1 的条件下,其比容量为 220 mAh g-1。此外,用制备的 Ce-BT-40 和 CeNiCo-LDH 制造 HSCs 时,在功率密度为 652 W kg-1 的情况下,可提供 59.1 Wh kg-1 的能量密度。这项研究不仅揭示了掺杂 Ce 对 BTs 电化学性能的影响机制,还提出了一种通过微波辅助溶剂法快速合成 Ce-BTs 的方法,为制造高能量密度、低成本的先进 HSCs 提供了新的思路。
Facile microwave-assisted synthesis of Ce-doped Bi2O3 for efficient hybrid supercapacitors
Bismuth trioxide (BT) is considered a fascinating anode material for hybrid supercapacitors (HSCs) due to its high theoretical capacity, but the low conductivity limits further applications. With this in mind, Ce-doped Bi2O3 (Ce-BT) nanoflower spheres were synthesized by a facile and rapid microwave-assisted solvothermal method for HSCs anode materials. It is found that the morphology of BT could be controlled by Ce doping from stacked nanosheets to well-dispersed nanoflowers spheres and producing abundant amorphous regions, thus expediting the ion transport rate. Consequently, when the added Bi to Ce molar ratio is 40:1 (Ce-BT-40), it exhibited a specific capacity of 220 mAh g−1 at 0.5 A g−1. Additionally, when fabricating HSCs with as-prepared Ce-BT-40 and CeNiCo-LDH, an energy density of 59.1 Wh kg−1 is provided at a power density of 652 W kg−1. This work not only reveals the mechanism of the effect of Ce doping on the electrochemical properties of BTs, but also proposes a rapid synthesis method of Ce-BTs by microwave-assisted solvent method, which provides new insights for building advanced HSCs with high energy density and low cost.