Kathia Amital Lemus-Sagrero, Del Carmen Chávez-Parga, José Apolinar Cortés
{"title":"通过联合消化食物垃圾和梅斯卡尔酒糟产生的沼气提高甲烷浓度","authors":"Kathia Amital Lemus-Sagrero, Del Carmen Chávez-Parga, José Apolinar Cortés","doi":"10.1007/s12155-023-10717-0","DOIUrl":null,"url":null,"abstract":"<div><p>The waste generated by the mezcal and seafood restaurant industries has significant negative environmental impacts on soils, water, and air. However, these waste materials offer the potential for methane production through anaerobic digestion. This research focuses on evaluating a methodological strategy that involves using an enriched inoculum, co-digesting waste materials, and applying specific pretreatment (chemical, thermal, and adjusting the volumetric ratio of residues) to produce biogas with a high methane content, as assessed through the Biochemical Methane Potential (BMP) test. The results demonstrate that the enriched inoculum used in the test exhibited a pH of 8.18, an Alkalinity of 31 g CaCO<sub>3</sub>/L, and an alpha (α) ratio of 0.75. The BMP test was conducted over 29 days. In the most successful test, which involved pretreatment at a temperature of 50 °C, a residue ratio of 1 V<sub>SW</sub> (Volume of Seafood Waste)/2 V<sub>MV</sub> (Volume of Mezcal Vinasses), and a pH of 6.5, we achieved a methane production of 1420.51 ± 0.038 N mL CH<sub>4</sub>, with a biogas containing 81.5% methane. This process also yielded 175.37 N mL CH<sub>4</sub> per gram of Volatile Solids (VS) and a degradation kinetic constant of 0.14 1/d. Through the methodological strategy used with the combination of an enriched and stabilized inoculum, the co-digestion of the waste for nutrient complementation, and the application of pretreatments, it was achieved that the different stages that constitute the anaerobic process allowed for the establishment of optimal conditions for the generation of biogas with a high methane content.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1402 - 1412"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement in Methane Concentration in the Biogas Produced through the Co-digestion of Food Waste and Mezcal Vinasses\",\"authors\":\"Kathia Amital Lemus-Sagrero, Del Carmen Chávez-Parga, José Apolinar Cortés\",\"doi\":\"10.1007/s12155-023-10717-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The waste generated by the mezcal and seafood restaurant industries has significant negative environmental impacts on soils, water, and air. However, these waste materials offer the potential for methane production through anaerobic digestion. This research focuses on evaluating a methodological strategy that involves using an enriched inoculum, co-digesting waste materials, and applying specific pretreatment (chemical, thermal, and adjusting the volumetric ratio of residues) to produce biogas with a high methane content, as assessed through the Biochemical Methane Potential (BMP) test. The results demonstrate that the enriched inoculum used in the test exhibited a pH of 8.18, an Alkalinity of 31 g CaCO<sub>3</sub>/L, and an alpha (α) ratio of 0.75. The BMP test was conducted over 29 days. In the most successful test, which involved pretreatment at a temperature of 50 °C, a residue ratio of 1 V<sub>SW</sub> (Volume of Seafood Waste)/2 V<sub>MV</sub> (Volume of Mezcal Vinasses), and a pH of 6.5, we achieved a methane production of 1420.51 ± 0.038 N mL CH<sub>4</sub>, with a biogas containing 81.5% methane. This process also yielded 175.37 N mL CH<sub>4</sub> per gram of Volatile Solids (VS) and a degradation kinetic constant of 0.14 1/d. Through the methodological strategy used with the combination of an enriched and stabilized inoculum, the co-digestion of the waste for nutrient complementation, and the application of pretreatments, it was achieved that the different stages that constitute the anaerobic process allowed for the establishment of optimal conditions for the generation of biogas with a high methane content.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"17 3\",\"pages\":\"1402 - 1412\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-023-10717-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-023-10717-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
梅斯卡尔酒和海鲜餐饮业产生的废物对土壤、水和空气造成了严重的负面环境影响。然而,这些废料却有可能通过厌氧消化产生甲烷。这项研究的重点是评估一种方法策略,即使用富集的接种物、共同消化废料,并进行特定的预处理(化学、热处理和调整残留物的体积比),以产生高甲烷含量的沼气(通过生化甲烷潜能值(BMP)测试进行评估)。结果表明,试验中使用的富集接种物的 pH 值为 8.18,碱度为 31 克 CaCO3/升,α(α)比为 0.75。BMP 测试历时 29 天。在最成功的试验中,预处理温度为 50 °C,残留物比率为 1 VSW(海鲜废料体积)/2 VMV(梅斯卡尔葡萄汁体积),pH 值为 6.5,甲烷产量为 1420.51 ± 0.038 N mL CH4,沼气中甲烷含量为 81.5%。该工艺每克挥发性固体(VS)还可产生 175.37 N mL CH4,降解动力学常数为 0.14 1/d。通过结合使用富集和稳定的接种物、共同消化废物以补充养分以及应用预处理等方法策略,厌氧工艺的不同阶段都能为产生甲烷含量高的沼气创造最佳条件。
Improvement in Methane Concentration in the Biogas Produced through the Co-digestion of Food Waste and Mezcal Vinasses
The waste generated by the mezcal and seafood restaurant industries has significant negative environmental impacts on soils, water, and air. However, these waste materials offer the potential for methane production through anaerobic digestion. This research focuses on evaluating a methodological strategy that involves using an enriched inoculum, co-digesting waste materials, and applying specific pretreatment (chemical, thermal, and adjusting the volumetric ratio of residues) to produce biogas with a high methane content, as assessed through the Biochemical Methane Potential (BMP) test. The results demonstrate that the enriched inoculum used in the test exhibited a pH of 8.18, an Alkalinity of 31 g CaCO3/L, and an alpha (α) ratio of 0.75. The BMP test was conducted over 29 days. In the most successful test, which involved pretreatment at a temperature of 50 °C, a residue ratio of 1 VSW (Volume of Seafood Waste)/2 VMV (Volume of Mezcal Vinasses), and a pH of 6.5, we achieved a methane production of 1420.51 ± 0.038 N mL CH4, with a biogas containing 81.5% methane. This process also yielded 175.37 N mL CH4 per gram of Volatile Solids (VS) and a degradation kinetic constant of 0.14 1/d. Through the methodological strategy used with the combination of an enriched and stabilized inoculum, the co-digestion of the waste for nutrient complementation, and the application of pretreatments, it was achieved that the different stages that constitute the anaerobic process allowed for the establishment of optimal conditions for the generation of biogas with a high methane content.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.