结合乙醇电氧化工艺的 PdOs 双金属节能制氢技术

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Materials Today Energy Pub Date : 2024-01-06 DOI:10.1016/j.mtener.2024.101493
Ziqiang Wang, Min Li, Shan Xu, Hongjie Ye, Kai Deng, You Xu, Hongjing Wang, Liang Wang
{"title":"结合乙醇电氧化工艺的 PdOs 双金属节能制氢技术","authors":"Ziqiang Wang, Min Li, Shan Xu, Hongjie Ye, Kai Deng, You Xu, Hongjing Wang, Liang Wang","doi":"10.1016/j.mtener.2024.101493","DOIUrl":null,"url":null,"abstract":"<p>The replacement of sluggish oxygen evolution reaction by more thermodynamically favorable ethanol oxidation reaction (EOR) is a promising strategy for co-production of hydrogen and valuable chemicals in energy-saving mode. Here, we propose the synthesis of highly curved PdOs bimetallene, which possesses high active sites atomic utilization and conductivity. Furthermore, alloy effect can regulate electronic structure and optimize adsorption energy of reactants. Therefore, PdOs bimetallene exhibits superior performance for hydrogen evolution reaction (HER) and EOR under basic solutions, with overpotential of 36 mV at 10 mA cm<sup>-2</sup> and mass activity of 1.51 mA μg<sup>-1</sup><sub>Pd</sub>, respectively. In the EOR-HER co-electrolysis system, PdOs bimetallene requires low voltage of 0.801 V for concurrent production of hydrogen and acetate at 50 mA cm<sup>−2</sup>, which greatly reduces energy consumption compared to conventional water electrolysis (1.976 V). This method provides a promising strategy for designing bimetallic electrocatalysts towards simultaneous energy-saving generation of hydrogen and high-value chemicals by replacing sluggish OER with more favorable ethanol oxidation reaction.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"72 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PdOs bimetallene for energy-saving hydrogen production coupled with ethanol electro-oxidation\",\"authors\":\"Ziqiang Wang, Min Li, Shan Xu, Hongjie Ye, Kai Deng, You Xu, Hongjing Wang, Liang Wang\",\"doi\":\"10.1016/j.mtener.2024.101493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The replacement of sluggish oxygen evolution reaction by more thermodynamically favorable ethanol oxidation reaction (EOR) is a promising strategy for co-production of hydrogen and valuable chemicals in energy-saving mode. Here, we propose the synthesis of highly curved PdOs bimetallene, which possesses high active sites atomic utilization and conductivity. Furthermore, alloy effect can regulate electronic structure and optimize adsorption energy of reactants. Therefore, PdOs bimetallene exhibits superior performance for hydrogen evolution reaction (HER) and EOR under basic solutions, with overpotential of 36 mV at 10 mA cm<sup>-2</sup> and mass activity of 1.51 mA μg<sup>-1</sup><sub>Pd</sub>, respectively. In the EOR-HER co-electrolysis system, PdOs bimetallene requires low voltage of 0.801 V for concurrent production of hydrogen and acetate at 50 mA cm<sup>−2</sup>, which greatly reduces energy consumption compared to conventional water electrolysis (1.976 V). This method provides a promising strategy for designing bimetallic electrocatalysts towards simultaneous energy-saving generation of hydrogen and high-value chemicals by replacing sluggish OER with more favorable ethanol oxidation reaction.</p>\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101493\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101493","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

用热力学上更有利的乙醇氧化反应(EOR)取代缓慢的氧进化反应,是一种以节能模式联合生产氢气和有价值化学品的有前途的战略。在此,我们提出了高弯曲 PdOs 双金属的合成方法,它具有高活性位点原子利用率和导电性。此外,合金效应可以调节电子结构,优化反应物的吸附能。因此,在碱性溶液条件下,PdOs 双茂钛在氢进化反应(HER)和 EOR 方面表现出卓越的性能,在 10 mA cm-2 条件下的过电位为 36 mV,质量活度为 1.51 mA μg-1Pd。在 EOR-HER 共电解系统中,PdOs 双茂钛需要 0.801 V 的低电压才能在 50 mA cm-2 的条件下同时产生氢气和醋酸盐,与传统的水电解(1.976 V)相比,大大降低了能耗。这种方法为设计双金属电催化剂提供了一种前景广阔的策略,通过用更有利的乙醇氧化反应取代迟缓的 OER,从而实现同时生成氢气和高价值化学品的节能目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PdOs bimetallene for energy-saving hydrogen production coupled with ethanol electro-oxidation

The replacement of sluggish oxygen evolution reaction by more thermodynamically favorable ethanol oxidation reaction (EOR) is a promising strategy for co-production of hydrogen and valuable chemicals in energy-saving mode. Here, we propose the synthesis of highly curved PdOs bimetallene, which possesses high active sites atomic utilization and conductivity. Furthermore, alloy effect can regulate electronic structure and optimize adsorption energy of reactants. Therefore, PdOs bimetallene exhibits superior performance for hydrogen evolution reaction (HER) and EOR under basic solutions, with overpotential of 36 mV at 10 mA cm-2 and mass activity of 1.51 mA μg-1Pd, respectively. In the EOR-HER co-electrolysis system, PdOs bimetallene requires low voltage of 0.801 V for concurrent production of hydrogen and acetate at 50 mA cm−2, which greatly reduces energy consumption compared to conventional water electrolysis (1.976 V). This method provides a promising strategy for designing bimetallic electrocatalysts towards simultaneous energy-saving generation of hydrogen and high-value chemicals by replacing sluggish OER with more favorable ethanol oxidation reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
期刊最新文献
Magnetic field-augmented photoelectrochemical water splitting in Co3O4 and NiO nanorod arrays Evolution from passive to active components in lithium metal and lithium-ion batteries separators Prolonging rechargeable aluminum batteries life with flexible ceramic separator Efficient hole transport layers for silicon heterojunction solar cells by surface plasmonic modification in MoOx/Au NPs/MoOx stacks Self-powered sensors utilizing single-pillar thermocells with pyrolytic graphite sheet electrodes: harvesting body heat and solar thermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1