Miguel López-Pérez , Pablo Morales-Álvarez , Lee A.D. Cooper , Christopher Felicelli , Jeffery Goldstein , Brian Vadasz , Rafael Molina , Aggelos K. Katsaggelos
{"title":"从人群中学习,实现组织病理学图像自动分割","authors":"Miguel López-Pérez , Pablo Morales-Álvarez , Lee A.D. Cooper , Christopher Felicelli , Jeffery Goldstein , Brian Vadasz , Rafael Molina , Aggelos K. Katsaggelos","doi":"10.1016/j.compmedimag.2024.102327","DOIUrl":null,"url":null,"abstract":"<div><p>Automated semantic segmentation of histopathological images is an essential task in Computational Pathology (CPATH). The main limitation of Deep Learning (DL) to address this task is the scarcity of expert annotations. Crowdsourcing (CR) has emerged as a promising solution to reduce the individual (expert) annotation cost by distributing the labeling effort among a group of (non-expert) annotators. Extracting knowledge in this scenario is challenging, as it involves noisy annotations. Jointly learning the underlying (expert) segmentation and the annotators’ expertise is currently a commonly used approach. Unfortunately, this approach is frequently carried out by learning a different neural network for each annotator, which scales poorly when the number of annotators grows. For this reason, this strategy cannot be easily applied to real-world CPATH segmentation. This paper proposes a new family of methods for CR segmentation of histopathological images. Our approach consists of two coupled networks: a segmentation network (for learning the expert segmentation) and an annotator network (for learning the annotators’ expertise). We propose to estimate the annotators’ behavior with only one network that receives the annotator ID as input, achieving scalability on the number of annotators. Our family is composed of three different models for the annotator network. Within this family, we propose a novel modeling of the annotator network in the CR segmentation literature, which considers the global features of the image. We validate our methods on a real-world dataset of Triple Negative Breast Cancer images labeled by several medical students. Our new CR modeling achieves a Dice coefficient of 0.7827, outperforming the well-known STAPLE (0.7039) and being competitive with the supervised method with expert labels (0.7723).</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000041/pdfft?md5=f2b9bb038211d99264cf03fb85d24146&pid=1-s2.0-S0895611124000041-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Learning from crowds for automated histopathological image segmentation\",\"authors\":\"Miguel López-Pérez , Pablo Morales-Álvarez , Lee A.D. Cooper , Christopher Felicelli , Jeffery Goldstein , Brian Vadasz , Rafael Molina , Aggelos K. Katsaggelos\",\"doi\":\"10.1016/j.compmedimag.2024.102327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automated semantic segmentation of histopathological images is an essential task in Computational Pathology (CPATH). The main limitation of Deep Learning (DL) to address this task is the scarcity of expert annotations. Crowdsourcing (CR) has emerged as a promising solution to reduce the individual (expert) annotation cost by distributing the labeling effort among a group of (non-expert) annotators. Extracting knowledge in this scenario is challenging, as it involves noisy annotations. Jointly learning the underlying (expert) segmentation and the annotators’ expertise is currently a commonly used approach. Unfortunately, this approach is frequently carried out by learning a different neural network for each annotator, which scales poorly when the number of annotators grows. For this reason, this strategy cannot be easily applied to real-world CPATH segmentation. This paper proposes a new family of methods for CR segmentation of histopathological images. Our approach consists of two coupled networks: a segmentation network (for learning the expert segmentation) and an annotator network (for learning the annotators’ expertise). We propose to estimate the annotators’ behavior with only one network that receives the annotator ID as input, achieving scalability on the number of annotators. Our family is composed of three different models for the annotator network. Within this family, we propose a novel modeling of the annotator network in the CR segmentation literature, which considers the global features of the image. We validate our methods on a real-world dataset of Triple Negative Breast Cancer images labeled by several medical students. Our new CR modeling achieves a Dice coefficient of 0.7827, outperforming the well-known STAPLE (0.7039) and being competitive with the supervised method with expert labels (0.7723).</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000041/pdfft?md5=f2b9bb038211d99264cf03fb85d24146&pid=1-s2.0-S0895611124000041-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Learning from crowds for automated histopathological image segmentation
Automated semantic segmentation of histopathological images is an essential task in Computational Pathology (CPATH). The main limitation of Deep Learning (DL) to address this task is the scarcity of expert annotations. Crowdsourcing (CR) has emerged as a promising solution to reduce the individual (expert) annotation cost by distributing the labeling effort among a group of (non-expert) annotators. Extracting knowledge in this scenario is challenging, as it involves noisy annotations. Jointly learning the underlying (expert) segmentation and the annotators’ expertise is currently a commonly used approach. Unfortunately, this approach is frequently carried out by learning a different neural network for each annotator, which scales poorly when the number of annotators grows. For this reason, this strategy cannot be easily applied to real-world CPATH segmentation. This paper proposes a new family of methods for CR segmentation of histopathological images. Our approach consists of two coupled networks: a segmentation network (for learning the expert segmentation) and an annotator network (for learning the annotators’ expertise). We propose to estimate the annotators’ behavior with only one network that receives the annotator ID as input, achieving scalability on the number of annotators. Our family is composed of three different models for the annotator network. Within this family, we propose a novel modeling of the annotator network in the CR segmentation literature, which considers the global features of the image. We validate our methods on a real-world dataset of Triple Negative Breast Cancer images labeled by several medical students. Our new CR modeling achieves a Dice coefficient of 0.7827, outperforming the well-known STAPLE (0.7039) and being competitive with the supervised method with expert labels (0.7723).
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.