用于经胫截肢者的可重新配置的气动插座。

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-01-07 DOI:10.1002/cnm.3801
Saeed Mollaee, Rita Q. Fuentes-Aguilar, Joel C. Huegel, David M. Budgett, Andrew J. Taberner, Poul M. F. Nielsen
{"title":"用于经胫截肢者的可重新配置的气动插座。","authors":"Saeed Mollaee,&nbsp;Rita Q. Fuentes-Aguilar,&nbsp;Joel C. Huegel,&nbsp;David M. Budgett,&nbsp;Andrew J. Taberner,&nbsp;Poul M. F. Nielsen","doi":"10.1002/cnm.3801","DOIUrl":null,"url":null,"abstract":"<p>Many transtibial amputees rate the fit between their residual limb and prosthetic socket as the most critical factor in satisfaction with using their prosthesis. This study aims to address the issue of prosthetic socket fit by reconfiguring the socket shape at the interface of the residual limb and socket. The proposed reconfigurable socket shifts pressure from sensitive areas and compensates for residual limb volume fluctuations, the most important factors in determining a good socket fit. Computed tomography scan images are employed to create the phantom limb of an amputee and to manufacture the reconfigurable socket. The performance of the reconfigurable socket was evaluated both experimentally and numerically using finite element modelling. The study showed that the reconfigurable socket can reduce interface pressure at targeted areas by up to 61%.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3801","citationCount":"0","resultStr":"{\"title\":\"A pneumatic reconfigurable socket for transtibial amputees\",\"authors\":\"Saeed Mollaee,&nbsp;Rita Q. Fuentes-Aguilar,&nbsp;Joel C. Huegel,&nbsp;David M. Budgett,&nbsp;Andrew J. Taberner,&nbsp;Poul M. F. Nielsen\",\"doi\":\"10.1002/cnm.3801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many transtibial amputees rate the fit between their residual limb and prosthetic socket as the most critical factor in satisfaction with using their prosthesis. This study aims to address the issue of prosthetic socket fit by reconfiguring the socket shape at the interface of the residual limb and socket. The proposed reconfigurable socket shifts pressure from sensitive areas and compensates for residual limb volume fluctuations, the most important factors in determining a good socket fit. Computed tomography scan images are employed to create the phantom limb of an amputee and to manufacture the reconfigurable socket. The performance of the reconfigurable socket was evaluated both experimentally and numerically using finite element modelling. The study showed that the reconfigurable socket can reduce interface pressure at targeted areas by up to 61%.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3801\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3801\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3801","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

许多经胫截肢者认为,残肢与假肢套筒之间的贴合度是影响假肢使用满意度的最关键因素。本研究旨在通过重新配置残肢与义肢插座接口处的插座形状来解决义肢插座的匹配问题。所建议的可重新配置义肢套筒可转移敏感区域的压力,并补偿残肢体积的波动,这些都是决定义肢套筒是否合适的最重要因素。计算机断层扫描图像被用于创建截肢者的幻肢和制造可重新配置插座。通过实验和有限元建模对可重构插座的性能进行了数值评估。研究表明,可重新配置插座可将目标区域的界面压力降低 61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A pneumatic reconfigurable socket for transtibial amputees

Many transtibial amputees rate the fit between their residual limb and prosthetic socket as the most critical factor in satisfaction with using their prosthesis. This study aims to address the issue of prosthetic socket fit by reconfiguring the socket shape at the interface of the residual limb and socket. The proposed reconfigurable socket shifts pressure from sensitive areas and compensates for residual limb volume fluctuations, the most important factors in determining a good socket fit. Computed tomography scan images are employed to create the phantom limb of an amputee and to manufacture the reconfigurable socket. The performance of the reconfigurable socket was evaluated both experimentally and numerically using finite element modelling. The study showed that the reconfigurable socket can reduce interface pressure at targeted areas by up to 61%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
期刊最新文献
Therapeutic Effect of Targeted Deployment Filling Coils in the Treatment of Intracranial Aneurysms. Modeling Fibrin Accumulation on Flow-Diverting Devices for Intracranial Aneurysms. A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data. A semi-automatic method for block-structured hexahedral meshing of aortic dissections. Fluid-structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1