通过基于 KinectTM 的步进参数识别虚弱表型。

JAR life Pub Date : 2023-12-20 eCollection Date: 2023-01-01 DOI:10.14283/jarlife.2023.17
Y Osuka, N Takeshima, N Kojima, T Kohama, E Fujita, M Kusunoki, Y Kato, W F Brechue, H Sasai
{"title":"通过基于 KinectTM 的步进参数识别虚弱表型。","authors":"Y Osuka, N Takeshima, N Kojima, T Kohama, E Fujita, M Kusunoki, Y Kato, W F Brechue, H Sasai","doi":"10.14283/jarlife.2023.17","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Frailty increases the risk of falling, hospitalization, and premature death, necessitating practical early-detection tools.</p><p><strong>Objectives: </strong>To examine the discriminative ability of Kinect<sup>TM</sup>-based stepping parameters for identifying frailty phenotype.</p><p><strong>Design: </strong>Population-based cross-sectional study.</p><p><strong>Setting: </strong>Eighteen neighborhoods near Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan.</p><p><strong>Participants: </strong>In total, 563 community-dwelling older adults aged ≥75 years without mobility limitations, neurological disease, or dementia were included.</p><p><strong>Measurements: </strong>Step number (SN) and knee total movement distance (KMD) during a 20-s stepping test were evaluated using the Kinect<sup>TM</sup> infrared depth sensor.</p><p><strong>Results: </strong>The number (%) of participants with frailty were 51 (9.1). The area under the receiver operating characteristic curves (95% confidence interval) of a parameter consisting of SN and KMD for frailty was 0.72 (0.64, 0.79).</p><p><strong>Conclusions: </strong>Stepping parameters evaluated using Kinect<sup>TM</sup> provided acceptable ability in identifying frailty phenotype, making it a practical screening tool in primary care and home settings.</p>","PeriodicalId":73537,"journal":{"name":"JAR life","volume":"12 ","pages":"100-104"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discrimination of Frailty Phenotype by Kinect<sup>TM</sup>-Based Stepping Parameters.\",\"authors\":\"Y Osuka, N Takeshima, N Kojima, T Kohama, E Fujita, M Kusunoki, Y Kato, W F Brechue, H Sasai\",\"doi\":\"10.14283/jarlife.2023.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Frailty increases the risk of falling, hospitalization, and premature death, necessitating practical early-detection tools.</p><p><strong>Objectives: </strong>To examine the discriminative ability of Kinect<sup>TM</sup>-based stepping parameters for identifying frailty phenotype.</p><p><strong>Design: </strong>Population-based cross-sectional study.</p><p><strong>Setting: </strong>Eighteen neighborhoods near Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan.</p><p><strong>Participants: </strong>In total, 563 community-dwelling older adults aged ≥75 years without mobility limitations, neurological disease, or dementia were included.</p><p><strong>Measurements: </strong>Step number (SN) and knee total movement distance (KMD) during a 20-s stepping test were evaluated using the Kinect<sup>TM</sup> infrared depth sensor.</p><p><strong>Results: </strong>The number (%) of participants with frailty were 51 (9.1). The area under the receiver operating characteristic curves (95% confidence interval) of a parameter consisting of SN and KMD for frailty was 0.72 (0.64, 0.79).</p><p><strong>Conclusions: </strong>Stepping parameters evaluated using Kinect<sup>TM</sup> provided acceptable ability in identifying frailty phenotype, making it a practical screening tool in primary care and home settings.</p>\",\"PeriodicalId\":73537,\"journal\":{\"name\":\"JAR life\",\"volume\":\"12 \",\"pages\":\"100-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAR life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14283/jarlife.2023.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAR life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14283/jarlife.2023.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:虚弱会增加跌倒、住院和过早死亡的风险,因此需要实用的早期检测工具:虚弱会增加跌倒、住院和过早死亡的风险,因此需要实用的早期检测工具:研究基于 KinectTM 的步态参数在识别虚弱表型方面的鉴别能力:设计:基于人群的横断面研究:地点:日本东京板桥区东京都老年医学研究所附近的 18 个社区:共纳入 563 名年龄≥75 岁、无行动不便、神经系统疾病或痴呆症的社区老年人:测量方法:使用 KinectTM 红外深度传感器评估 20 秒迈步测试中的步数(SN)和膝关节总移动距离(KMD):结果:患有虚弱症的参与者有 51 人(9.1%)。由 SN 和 KMD 组成的衰弱参数的接收器操作特征曲线下面积(95% 置信区间)为 0.72 (0.64, 0.79):使用 KinectTM 评估的步态参数在识别虚弱表型方面具有可接受的能力,使其成为初级保健和家庭环境中的实用筛查工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrimination of Frailty Phenotype by KinectTM-Based Stepping Parameters.

Background: Frailty increases the risk of falling, hospitalization, and premature death, necessitating practical early-detection tools.

Objectives: To examine the discriminative ability of KinectTM-based stepping parameters for identifying frailty phenotype.

Design: Population-based cross-sectional study.

Setting: Eighteen neighborhoods near Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan.

Participants: In total, 563 community-dwelling older adults aged ≥75 years without mobility limitations, neurological disease, or dementia were included.

Measurements: Step number (SN) and knee total movement distance (KMD) during a 20-s stepping test were evaluated using the KinectTM infrared depth sensor.

Results: The number (%) of participants with frailty were 51 (9.1). The area under the receiver operating characteristic curves (95% confidence interval) of a parameter consisting of SN and KMD for frailty was 0.72 (0.64, 0.79).

Conclusions: Stepping parameters evaluated using KinectTM provided acceptable ability in identifying frailty phenotype, making it a practical screening tool in primary care and home settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is late-life vulnerability to cardiovascular disease risk associated with longitudinal tau accumulation in older adults with mild cognitive impairment? Comparison of body composition changes and nutritional status after surgery between older Japanese patients with upper and lower gastrointestinal cancer. Adherence and aerobic exercise intensity in live online exercise sessions for older adults with mild cognitive impairment: Insights from the Japan-Multimodal Intervention Trial for the Prevention of Dementia. Pre-surgical memory impairment is associated with risk of postoperative cognitive dysfunction in a large geriatric cohort. Contribution of physical activity to intrinsic capacity differs in USA, UK, Europe and China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1