感应电机转速反转时的模糊监控方法

IF 1 Q4 ENGINEERING, MECHANICAL Acta Mechanica et Automatica Pub Date : 2024-01-05 DOI:10.2478/ama-2024-0009
Noura Rezika Hatem Bellahsene
{"title":"感应电机转速反转时的模糊监控方法","authors":"Noura Rezika Hatem Bellahsene","doi":"10.2478/ama-2024-0009","DOIUrl":null,"url":null,"abstract":"Abstract This article aims to implement the fuzzy control for an asynchronous motor after a general representation of the vector control. We develop MAMDANI type fuzzy algorithm for MAS speed regulation; it’s one purpose is to cancel static error, decrease overshoot, decrease response time, and rise time to obtain an adequate response of the process and regulation and to have a precise, fast, stable and robust system. This paper investigates the design of a fuzzy-based approach for monitoring the inversion of the rotational speed of an induction motor. We will indeed present a robust vector control technique ex-tended to blur in the event of a fault. Direct torque control is known to produce fast and robust response in the AC drive system. However, in a steady state, a rapid and unexpected change in speed can occur which could be dangerous. The performance of the conventional PID controller can be improved by implementing fuzzy logic techniques. The first step is the modelling of the whole system, including the capacitors, the induction generator and the loads. The model is obtained using the Park transformation. The results are thus compared with those of the standard PID control. This approach is applied to a three-phase asynchronous motor (LS90Lz). The presented study improves the transient response time and the precision of the servo system. An inversion of the reference speed of rotation is considered, and the results are very convincing.","PeriodicalId":44942,"journal":{"name":"Acta Mechanica et Automatica","volume":"53 11","pages":"68 - 76"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Based Supervision Approach in the Event of Rotational Speed Inversion in an Induction Motor\",\"authors\":\"Noura Rezika Hatem Bellahsene\",\"doi\":\"10.2478/ama-2024-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article aims to implement the fuzzy control for an asynchronous motor after a general representation of the vector control. We develop MAMDANI type fuzzy algorithm for MAS speed regulation; it’s one purpose is to cancel static error, decrease overshoot, decrease response time, and rise time to obtain an adequate response of the process and regulation and to have a precise, fast, stable and robust system. This paper investigates the design of a fuzzy-based approach for monitoring the inversion of the rotational speed of an induction motor. We will indeed present a robust vector control technique ex-tended to blur in the event of a fault. Direct torque control is known to produce fast and robust response in the AC drive system. However, in a steady state, a rapid and unexpected change in speed can occur which could be dangerous. The performance of the conventional PID controller can be improved by implementing fuzzy logic techniques. The first step is the modelling of the whole system, including the capacitors, the induction generator and the loads. The model is obtained using the Park transformation. The results are thus compared with those of the standard PID control. This approach is applied to a three-phase asynchronous motor (LS90Lz). The presented study improves the transient response time and the precision of the servo system. An inversion of the reference speed of rotation is considered, and the results are very convincing.\",\"PeriodicalId\":44942,\"journal\":{\"name\":\"Acta Mechanica et Automatica\",\"volume\":\"53 11\",\"pages\":\"68 - 76\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica et Automatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ama-2024-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica et Automatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2024-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文的目的是在对矢量控制进行一般表述后,对异步电机实施模糊控制。我们开发了用于 MAS 速度调节的 MAMDANI 型模糊算法;其目的之一是消除静态误差、减少过冲、减少响应时间和上升时间,以获得过程和调节的充分响应,并拥有一个精确、快速、稳定和鲁棒的系统。本文研究设计一种基于模糊的方法,用于监控感应电机转速的反转。实际上,我们将提出一种鲁棒矢量控制技术,用于在发生故障时进行模糊控制。众所周知,直接转矩控制能在交流驱动系统中产生快速而稳健的响应。然而,在稳定状态下,转速可能会发生意想不到的快速变化,从而带来危险。采用模糊逻辑技术可以改善传统 PID 控制器的性能。第一步是建立整个系统的模型,包括电容器、感应发电机和负载。该模型通过帕克变换获得。然后将结果与标准 PID 控制进行比较。这种方法适用于三相异步电机 (LS90Lz)。这项研究改善了伺服系统的瞬态响应时间和精度。研究还考虑了参考转速的反转,结果令人信服。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy Based Supervision Approach in the Event of Rotational Speed Inversion in an Induction Motor
Abstract This article aims to implement the fuzzy control for an asynchronous motor after a general representation of the vector control. We develop MAMDANI type fuzzy algorithm for MAS speed regulation; it’s one purpose is to cancel static error, decrease overshoot, decrease response time, and rise time to obtain an adequate response of the process and regulation and to have a precise, fast, stable and robust system. This paper investigates the design of a fuzzy-based approach for monitoring the inversion of the rotational speed of an induction motor. We will indeed present a robust vector control technique ex-tended to blur in the event of a fault. Direct torque control is known to produce fast and robust response in the AC drive system. However, in a steady state, a rapid and unexpected change in speed can occur which could be dangerous. The performance of the conventional PID controller can be improved by implementing fuzzy logic techniques. The first step is the modelling of the whole system, including the capacitors, the induction generator and the loads. The model is obtained using the Park transformation. The results are thus compared with those of the standard PID control. This approach is applied to a three-phase asynchronous motor (LS90Lz). The presented study improves the transient response time and the precision of the servo system. An inversion of the reference speed of rotation is considered, and the results are very convincing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica et Automatica
Acta Mechanica et Automatica ENGINEERING, MECHANICAL-
CiteScore
1.40
自引率
0.00%
发文量
45
审稿时长
30 weeks
期刊最新文献
The CO2 Capture System with a Swing Temperature Moving Bed Machining of TiAl6V4 Using Lubricants Containing Renewable Microalgae-Born Performance Additives Fuzzy Based Supervision Approach in the Event of Rotational Speed Inversion in an Induction Motor Thermal and Visualisation Study of the HFE7100 Refrigerant Condensation Process Fatigue Behaviour of Medium Carbon Steel Assessed by the Barkhausen Noise Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1