Anthony J. Brady , Alec Eickbusch , Shraddha Singh , Jing Wu , Quntao Zhuang
{"title":"利用戈特曼-基塔埃夫-普雷斯基尔代码进行玻色量子纠错的进展:理论、工程与应用","authors":"Anthony J. Brady , Alec Eickbusch , Shraddha Singh , Jing Wu , Quntao Zhuang","doi":"10.1016/j.pquantelec.2023.100496","DOIUrl":null,"url":null,"abstract":"<div><p>Encoding quantum information<span> into a set of harmonic oscillators<span><span> is considered a hardware efficient approach to mitigate noise for reliable quantum information processing. Various codes have been proposed to encode a </span>qubit<span> into an oscillator – including cat codes, binomial codes and Gottesman–Kitaev–Preskill (GKP) codes – and are among the first to reach a break-even point for quantum error correction<span><span>. Though GKP codes are widely recognized for their promise in quantum computation, they also facilitate near-optimal </span>quantum communication rates in bosonic channels and offer the ability to safeguard arbitrary quantum states of oscillators. This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes—emphasizing recent experimental progress in superconducting circuit architectures and theoretical advancements in multimode GKP qubit codes and oscillators-to-oscillators (O2O) codes. We begin with a preliminary continuous-variable formalism needed for bosonic codes. We then proceed to the quantum engineering involved to physically realize GKP states. We take a deep dive into GKP stabilization and preparation in superconducting architectures and examine proposals for realizing GKP states in the optical domain (along with a concise review of GKP realization in trapped-ion platforms). Finally, we present multimode GKP qubits and GKP-O2O codes, examine code performance and discuss applications of GKP codes in quantum information processing tasks such as computing, communication, and sensing.</span></span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"93 ","pages":"Article 100496"},"PeriodicalIF":7.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in bosonic quantum error correction with Gottesman–Kitaev–Preskill Codes: Theory, engineering and applications\",\"authors\":\"Anthony J. Brady , Alec Eickbusch , Shraddha Singh , Jing Wu , Quntao Zhuang\",\"doi\":\"10.1016/j.pquantelec.2023.100496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Encoding quantum information<span> into a set of harmonic oscillators<span><span> is considered a hardware efficient approach to mitigate noise for reliable quantum information processing. Various codes have been proposed to encode a </span>qubit<span> into an oscillator – including cat codes, binomial codes and Gottesman–Kitaev–Preskill (GKP) codes – and are among the first to reach a break-even point for quantum error correction<span><span>. Though GKP codes are widely recognized for their promise in quantum computation, they also facilitate near-optimal </span>quantum communication rates in bosonic channels and offer the ability to safeguard arbitrary quantum states of oscillators. This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes—emphasizing recent experimental progress in superconducting circuit architectures and theoretical advancements in multimode GKP qubit codes and oscillators-to-oscillators (O2O) codes. We begin with a preliminary continuous-variable formalism needed for bosonic codes. We then proceed to the quantum engineering involved to physically realize GKP states. We take a deep dive into GKP stabilization and preparation in superconducting architectures and examine proposals for realizing GKP states in the optical domain (along with a concise review of GKP realization in trapped-ion platforms). Finally, we present multimode GKP qubits and GKP-O2O codes, examine code performance and discuss applications of GKP codes in quantum information processing tasks such as computing, communication, and sensing.</span></span></span></span></p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"93 \",\"pages\":\"Article 100496\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672723000459\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672723000459","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Advances in bosonic quantum error correction with Gottesman–Kitaev–Preskill Codes: Theory, engineering and applications
Encoding quantum information into a set of harmonic oscillators is considered a hardware efficient approach to mitigate noise for reliable quantum information processing. Various codes have been proposed to encode a qubit into an oscillator – including cat codes, binomial codes and Gottesman–Kitaev–Preskill (GKP) codes – and are among the first to reach a break-even point for quantum error correction. Though GKP codes are widely recognized for their promise in quantum computation, they also facilitate near-optimal quantum communication rates in bosonic channels and offer the ability to safeguard arbitrary quantum states of oscillators. This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes—emphasizing recent experimental progress in superconducting circuit architectures and theoretical advancements in multimode GKP qubit codes and oscillators-to-oscillators (O2O) codes. We begin with a preliminary continuous-variable formalism needed for bosonic codes. We then proceed to the quantum engineering involved to physically realize GKP states. We take a deep dive into GKP stabilization and preparation in superconducting architectures and examine proposals for realizing GKP states in the optical domain (along with a concise review of GKP realization in trapped-ion platforms). Finally, we present multimode GKP qubits and GKP-O2O codes, examine code performance and discuss applications of GKP codes in quantum information processing tasks such as computing, communication, and sensing.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.