J. Turko, R. Beyer, A. Junghans, I. Meric, S.E. Mueller, G. Pausch, H.N. Ratliff, K. Römer, S. M. Schellhammer, L. Setterdahl, S. Urlass, A. Wagner, T. Kögler
{"title":"有机玻璃闪烁条的特性及其用于质子放疗范围验证的中子/伽马射线混合成像系统的潜力","authors":"J. Turko, R. Beyer, A. Junghans, I. Meric, S.E. Mueller, G. Pausch, H.N. Ratliff, K. Römer, S. M. Schellhammer, L. Setterdahl, S. Urlass, A. Wagner, T. Kögler","doi":"10.1088/1748-0221/19/01/P01008","DOIUrl":null,"url":null,"abstract":"For accurate and simultaneous imaging of fast neutrons (FNs) and prompt gamma rays (PGs) produced during proton therapy, the selection of a highly performant detector material is crucial. In this work, a promising candidate material known as organic glass scintillator (OGS) is characterized for this task. To this end, a precisely-timed source of neutrons and Bremsstrahlung radiation produced by the nELBE facility was used to study the light output and neutron/gamma ray pulse shape discrimination (PSD) properties of a 1 × 1 × 20 cm3 OGS bar with double-sided readout. Furthermore, the energy, timing, and depth-of-interaction (DOI) resolutions of 1 × 1 × 10 cm3 and 1 × 1 × 20 cm3 OGS and EJ-200 bars were characterized with radioactive sources. For electron-equivalent energies above 0.5 MeVee, OGS was found to have excellent PSD capabilities (figure-of-merit above 1.27), energy resolution (below 12%), coincident time resolution (below 500 ps), and DOI resolution (below 10 mm). This work establishes the data analysis methods required for hybrid FN/PG imaging using OGS, and demonstrates the materials' excellent performance for this application.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":" 43","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of organic glass scintillator bars and their potential for a hybrid neutron/gamma ray imaging system for proton radiotherapy range verification\",\"authors\":\"J. Turko, R. Beyer, A. Junghans, I. Meric, S.E. Mueller, G. Pausch, H.N. Ratliff, K. Römer, S. M. Schellhammer, L. Setterdahl, S. Urlass, A. Wagner, T. Kögler\",\"doi\":\"10.1088/1748-0221/19/01/P01008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For accurate and simultaneous imaging of fast neutrons (FNs) and prompt gamma rays (PGs) produced during proton therapy, the selection of a highly performant detector material is crucial. In this work, a promising candidate material known as organic glass scintillator (OGS) is characterized for this task. To this end, a precisely-timed source of neutrons and Bremsstrahlung radiation produced by the nELBE facility was used to study the light output and neutron/gamma ray pulse shape discrimination (PSD) properties of a 1 × 1 × 20 cm3 OGS bar with double-sided readout. Furthermore, the energy, timing, and depth-of-interaction (DOI) resolutions of 1 × 1 × 10 cm3 and 1 × 1 × 20 cm3 OGS and EJ-200 bars were characterized with radioactive sources. For electron-equivalent energies above 0.5 MeVee, OGS was found to have excellent PSD capabilities (figure-of-merit above 1.27), energy resolution (below 12%), coincident time resolution (below 500 ps), and DOI resolution (below 10 mm). This work establishes the data analysis methods required for hybrid FN/PG imaging using OGS, and demonstrates the materials' excellent performance for this application.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\" 43\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/19/01/P01008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/01/P01008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Characterization of organic glass scintillator bars and their potential for a hybrid neutron/gamma ray imaging system for proton radiotherapy range verification
For accurate and simultaneous imaging of fast neutrons (FNs) and prompt gamma rays (PGs) produced during proton therapy, the selection of a highly performant detector material is crucial. In this work, a promising candidate material known as organic glass scintillator (OGS) is characterized for this task. To this end, a precisely-timed source of neutrons and Bremsstrahlung radiation produced by the nELBE facility was used to study the light output and neutron/gamma ray pulse shape discrimination (PSD) properties of a 1 × 1 × 20 cm3 OGS bar with double-sided readout. Furthermore, the energy, timing, and depth-of-interaction (DOI) resolutions of 1 × 1 × 10 cm3 and 1 × 1 × 20 cm3 OGS and EJ-200 bars were characterized with radioactive sources. For electron-equivalent energies above 0.5 MeVee, OGS was found to have excellent PSD capabilities (figure-of-merit above 1.27), energy resolution (below 12%), coincident time resolution (below 500 ps), and DOI resolution (below 10 mm). This work establishes the data analysis methods required for hybrid FN/PG imaging using OGS, and demonstrates the materials' excellent performance for this application.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.