D. Hladik, J. Jakůbek, K. Sykorova, T. Cerna, D. Doubravova, M. Urban, Š. Polansky
{"title":"优化和鉴定 Timepix2 混合像素探测器:提高科学和工业应用的性能和精度","authors":"D. Hladik, J. Jakůbek, K. Sykorova, T. Cerna, D. Doubravova, M. Urban, Š. Polansky","doi":"10.1088/1748-0221/19/01/C01007","DOIUrl":null,"url":null,"abstract":"The introduction of the new hybrid pixel detector Timepix2, as a successor to the well-known Timepix detector, has presented new opportunities for optimizing and characterizing this novel device. In this paper, we study the Timepix2 detector optimization and analyze its behavior, which enables better parameter setting for specific applications, resulting in enhanced device performance. Our newly developed equalization process, in conjunction with the device optimization, has led to significant improvements in the detector's accuracy and performance, facilitating more precise data collection and analysis. These advancements pave the way for the broader utilization of Timepix2 in numerous applications, such as space weather monitoring, X-ray diffraction, etc. Overall, our study provides valuable insights into the optimization and characterization of Timepix2, highlighting its potential as a powerful tool in various scientific, industrial and space applications.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"32 1‐2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing and characterizing the Timepix2 hybrid pixel detector: enhancing performance and precision for scientific and industrial applications\",\"authors\":\"D. Hladik, J. Jakůbek, K. Sykorova, T. Cerna, D. Doubravova, M. Urban, Š. Polansky\",\"doi\":\"10.1088/1748-0221/19/01/C01007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The introduction of the new hybrid pixel detector Timepix2, as a successor to the well-known Timepix detector, has presented new opportunities for optimizing and characterizing this novel device. In this paper, we study the Timepix2 detector optimization and analyze its behavior, which enables better parameter setting for specific applications, resulting in enhanced device performance. Our newly developed equalization process, in conjunction with the device optimization, has led to significant improvements in the detector's accuracy and performance, facilitating more precise data collection and analysis. These advancements pave the way for the broader utilization of Timepix2 in numerous applications, such as space weather monitoring, X-ray diffraction, etc. Overall, our study provides valuable insights into the optimization and characterization of Timepix2, highlighting its potential as a powerful tool in various scientific, industrial and space applications.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"32 1‐2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/19/01/C01007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/01/C01007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Optimizing and characterizing the Timepix2 hybrid pixel detector: enhancing performance and precision for scientific and industrial applications
The introduction of the new hybrid pixel detector Timepix2, as a successor to the well-known Timepix detector, has presented new opportunities for optimizing and characterizing this novel device. In this paper, we study the Timepix2 detector optimization and analyze its behavior, which enables better parameter setting for specific applications, resulting in enhanced device performance. Our newly developed equalization process, in conjunction with the device optimization, has led to significant improvements in the detector's accuracy and performance, facilitating more precise data collection and analysis. These advancements pave the way for the broader utilization of Timepix2 in numerous applications, such as space weather monitoring, X-ray diffraction, etc. Overall, our study provides valuable insights into the optimization and characterization of Timepix2, highlighting its potential as a powerful tool in various scientific, industrial and space applications.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.