{"title":"训练有素的免疫力对呼吸道病毒感染的影响","authors":"J. Piret, Guy Boivin","doi":"10.1002/rmv.2510","DOIUrl":null,"url":null,"abstract":"Epidemic peaks of respiratory viruses that co‐circulate during the winter‐spring seasons can be synchronous or asynchronous. The occurrence of temporal patterns in epidemics caused by some respiratory viruses suggests that they could negatively interact with each other. These negative interactions may result from a programme of innate immune memory, known as trained immunity, which may confer broad protective effects against respiratory viruses. It is suggested that stimulation of innate immune cells by a vaccine or a pathogen could induce their long‐term functional reprogramming through an interplay between metabolic and epigenetic changes, which influence the transcriptional response to a secondary challenge. During the coronavirus disease 2019 pandemic, the circulation of most respiratory viruses was prevented by non‐pharmacological interventions and then resumed at unusual periods once sanitary measures were lifted. With time, respiratory viruses should find again their own ecological niches. This transition period provides an opportunity to study the interactions between respiratory viruses at the population level.","PeriodicalId":21180,"journal":{"name":"Reviews in Medical Virology","volume":"30 8","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of trained immunity in respiratory viral infections\",\"authors\":\"J. Piret, Guy Boivin\",\"doi\":\"10.1002/rmv.2510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epidemic peaks of respiratory viruses that co‐circulate during the winter‐spring seasons can be synchronous or asynchronous. The occurrence of temporal patterns in epidemics caused by some respiratory viruses suggests that they could negatively interact with each other. These negative interactions may result from a programme of innate immune memory, known as trained immunity, which may confer broad protective effects against respiratory viruses. It is suggested that stimulation of innate immune cells by a vaccine or a pathogen could induce their long‐term functional reprogramming through an interplay between metabolic and epigenetic changes, which influence the transcriptional response to a secondary challenge. During the coronavirus disease 2019 pandemic, the circulation of most respiratory viruses was prevented by non‐pharmacological interventions and then resumed at unusual periods once sanitary measures were lifted. With time, respiratory viruses should find again their own ecological niches. This transition period provides an opportunity to study the interactions between respiratory viruses at the population level.\",\"PeriodicalId\":21180,\"journal\":{\"name\":\"Reviews in Medical Virology\",\"volume\":\"30 8\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/rmv.2510\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/rmv.2510","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
The impact of trained immunity in respiratory viral infections
Epidemic peaks of respiratory viruses that co‐circulate during the winter‐spring seasons can be synchronous or asynchronous. The occurrence of temporal patterns in epidemics caused by some respiratory viruses suggests that they could negatively interact with each other. These negative interactions may result from a programme of innate immune memory, known as trained immunity, which may confer broad protective effects against respiratory viruses. It is suggested that stimulation of innate immune cells by a vaccine or a pathogen could induce their long‐term functional reprogramming through an interplay between metabolic and epigenetic changes, which influence the transcriptional response to a secondary challenge. During the coronavirus disease 2019 pandemic, the circulation of most respiratory viruses was prevented by non‐pharmacological interventions and then resumed at unusual periods once sanitary measures were lifted. With time, respiratory viruses should find again their own ecological niches. This transition period provides an opportunity to study the interactions between respiratory viruses at the population level.
期刊介绍:
Reviews in Medical Virology aims to provide articles reviewing conceptual or technological advances in diverse areas of virology. The journal covers topics such as molecular biology, cell biology, replication, pathogenesis, immunology, immunization, epidemiology, diagnosis, treatment of viruses of medical importance, and COVID-19 research. The journal has an Impact Factor of 6.989 for the year 2020.
The readership of the journal includes clinicians, virologists, medical microbiologists, molecular biologists, infectious disease specialists, and immunologists. Reviews in Medical Virology is indexed and abstracted in databases such as CABI, Abstracts in Anthropology, ProQuest, Embase, MEDLINE/PubMed, ProQuest Central K-494, SCOPUS, and Web of Science et,al.