Azzurra Invernizzi, Stefano Renzetti, Elza Rechtman, Claudia Ambrosi, Lorella Mascaro, Daniele Corbo, Roberto Gasparotti, Cheuk Y. Tang, Donald R. Smith, Roberto G. Lucchini, Robert O. Wright, Donatella Placidi, Megan K. Horton, Paul Curtin
{"title":"神经与环境的相互作用:时间敏感问题","authors":"Azzurra Invernizzi, Stefano Renzetti, Elza Rechtman, Claudia Ambrosi, Lorella Mascaro, Daniele Corbo, Roberto Gasparotti, Cheuk Y. Tang, Donald R. Smith, Roberto G. Lucchini, Robert O. Wright, Donatella Placidi, Megan K. Horton, Paul Curtin","doi":"10.3389/fncom.2023.1302010","DOIUrl":null,"url":null,"abstract":"<sec><title>Introduction</title><p>The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI).</p></sec><sec><title>Methods</title><p>We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13–25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex.</p></sec><sec><title>Results</title><p>Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (<italic>p</italic> < 0.001, <italic>r</italic> = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics.</p></sec><sec><title>Discussion</title><p>Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.</p></sec>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuro-environmental interactions: a time sensitive matter\",\"authors\":\"Azzurra Invernizzi, Stefano Renzetti, Elza Rechtman, Claudia Ambrosi, Lorella Mascaro, Daniele Corbo, Roberto Gasparotti, Cheuk Y. Tang, Donald R. Smith, Roberto G. Lucchini, Robert O. Wright, Donatella Placidi, Megan K. Horton, Paul Curtin\",\"doi\":\"10.3389/fncom.2023.1302010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<sec><title>Introduction</title><p>The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI).</p></sec><sec><title>Methods</title><p>We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13–25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex.</p></sec><sec><title>Results</title><p>Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (<italic>p</italic> < 0.001, <italic>r</italic> = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics.</p></sec><sec><title>Discussion</title><p>Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.</p></sec>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2023.1302010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2023.1302010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Neuro-environmental interactions: a time sensitive matter
Introduction
The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI).
Methods
We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13–25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex.
Results
Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics.
Discussion
Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro