用于发育节奏比较研究的干细胞动物园

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-01-09 DOI:10.1016/j.gde.2023.102149
Jorge Lázaro , Jaroslaw Sochacki , Miki Ebisuya
{"title":"用于发育节奏比较研究的干细胞动物园","authors":"Jorge Lázaro ,&nbsp;Jaroslaw Sochacki ,&nbsp;Miki Ebisuya","doi":"10.1016/j.gde.2023.102149","DOIUrl":null,"url":null,"abstract":"<div><p>The rate of development is highly variable across animal species. However, the mechanisms regulating developmental tempo have remained elusive due to difficulties in performing direct interspecies comparisons. Here, we discuss how pluripotent stem cell-based models of development can be used to investigate cell- and tissue-autonomous temporal processes. These systems enable quantitative comparisons of different animal species under similar experimental conditions. Moreover, the constantly growing stem cell zoo collection allows the extension of developmental studies to a great number of unconventional species. We argue that the stem cell zoo constitutes a powerful platform to perform comparative studies of developmental tempo, as well as to study other forms of biological time control such as species-specific lifespan, heart rate, and circadian clocks.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"84 ","pages":"Article 102149"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X23001296/pdfft?md5=37da80d8b4e7024906d68592591970c7&pid=1-s2.0-S0959437X23001296-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The stem cell zoo for comparative studies of developmental tempo\",\"authors\":\"Jorge Lázaro ,&nbsp;Jaroslaw Sochacki ,&nbsp;Miki Ebisuya\",\"doi\":\"10.1016/j.gde.2023.102149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rate of development is highly variable across animal species. However, the mechanisms regulating developmental tempo have remained elusive due to difficulties in performing direct interspecies comparisons. Here, we discuss how pluripotent stem cell-based models of development can be used to investigate cell- and tissue-autonomous temporal processes. These systems enable quantitative comparisons of different animal species under similar experimental conditions. Moreover, the constantly growing stem cell zoo collection allows the extension of developmental studies to a great number of unconventional species. We argue that the stem cell zoo constitutes a powerful platform to perform comparative studies of developmental tempo, as well as to study other forms of biological time control such as species-specific lifespan, heart rate, and circadian clocks.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"84 \",\"pages\":\"Article 102149\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959437X23001296/pdfft?md5=37da80d8b4e7024906d68592591970c7&pid=1-s2.0-S0959437X23001296-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X23001296\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X23001296","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

不同动物物种的发育速度差异很大。然而,由于难以进行种间直接比较,调节发育速度的机制一直难以捉摸。在此,我们讨论了如何利用基于多能干细胞的发育模型来研究细胞和组织自主的时间过程。这些系统可在相似的实验条件下对不同动物物种进行定量比较。此外,不断扩大的干细胞动物群使发育研究扩展到大量非常规物种。我们认为,干细胞动物园是进行发育节奏比较研究的强大平台,也是研究其他生物时间控制形式(如物种特异性寿命、心率和昼夜节律钟)的强大平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The stem cell zoo for comparative studies of developmental tempo

The rate of development is highly variable across animal species. However, the mechanisms regulating developmental tempo have remained elusive due to difficulties in performing direct interspecies comparisons. Here, we discuss how pluripotent stem cell-based models of development can be used to investigate cell- and tissue-autonomous temporal processes. These systems enable quantitative comparisons of different animal species under similar experimental conditions. Moreover, the constantly growing stem cell zoo collection allows the extension of developmental studies to a great number of unconventional species. We argue that the stem cell zoo constitutes a powerful platform to perform comparative studies of developmental tempo, as well as to study other forms of biological time control such as species-specific lifespan, heart rate, and circadian clocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes Novelty versus innovation of gene regulatory elements in human evolution and disease Editorial Board Circuit integration by transplanted human neurons Control of cell fate upon transcription factor–driven cardiac reprogramming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1