Georg Novotny, Yuzhou Liu, Walter Morales-Alvarez, Wilfried Wöber, Cristina Olaverri-Monreal
{"title":"利用机器学习估算雪地条件下的车辆侧滑角","authors":"Georg Novotny, Yuzhou Liu, Walter Morales-Alvarez, Wilfried Wöber, Cristina Olaverri-Monreal","doi":"10.3233/ica-230727","DOIUrl":null,"url":null,"abstract":"Adverse weather conditions, such as snow-covered roads, represent a challenge for autonomous vehicle research. This is particularly challenging as it might cause misalignment between the longitudinal axis of the vehicle and the actual direction of travel. In this paper, we extend previous work in the field of autonomous vehicles on snow-covered roads and present a novel approach for side-slip angle estimation that combines perception with a hybrid artificial neural network pushing the prediction horizon beyond existing approaches. We exploited the feature extraction capabilities of convolutional neural networks and the dynamic time series relationship learning capabilities of gated recurrent units and combined them with a motion model to estimate the side-slip angle. Subsequently, we evaluated the model using the 3DCoAutoSim simulation platform, where we designed a suitable simulation environment with snowfall, friction, and car tracks in snow. The results revealed that our approach outperforms the baseline model for prediction horizons ⩾ 2 seconds. This extended prediction horizon has practical implications, by providing drivers and autonomous systems with more time to make informed decisions, thereby enhancing road safety.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"64 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle side-slip angle estimation under snowy conditions using machine learning\",\"authors\":\"Georg Novotny, Yuzhou Liu, Walter Morales-Alvarez, Wilfried Wöber, Cristina Olaverri-Monreal\",\"doi\":\"10.3233/ica-230727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adverse weather conditions, such as snow-covered roads, represent a challenge for autonomous vehicle research. This is particularly challenging as it might cause misalignment between the longitudinal axis of the vehicle and the actual direction of travel. In this paper, we extend previous work in the field of autonomous vehicles on snow-covered roads and present a novel approach for side-slip angle estimation that combines perception with a hybrid artificial neural network pushing the prediction horizon beyond existing approaches. We exploited the feature extraction capabilities of convolutional neural networks and the dynamic time series relationship learning capabilities of gated recurrent units and combined them with a motion model to estimate the side-slip angle. Subsequently, we evaluated the model using the 3DCoAutoSim simulation platform, where we designed a suitable simulation environment with snowfall, friction, and car tracks in snow. The results revealed that our approach outperforms the baseline model for prediction horizons ⩾ 2 seconds. This extended prediction horizon has practical implications, by providing drivers and autonomous systems with more time to make informed decisions, thereby enhancing road safety.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-230727\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-230727","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Vehicle side-slip angle estimation under snowy conditions using machine learning
Adverse weather conditions, such as snow-covered roads, represent a challenge for autonomous vehicle research. This is particularly challenging as it might cause misalignment between the longitudinal axis of the vehicle and the actual direction of travel. In this paper, we extend previous work in the field of autonomous vehicles on snow-covered roads and present a novel approach for side-slip angle estimation that combines perception with a hybrid artificial neural network pushing the prediction horizon beyond existing approaches. We exploited the feature extraction capabilities of convolutional neural networks and the dynamic time series relationship learning capabilities of gated recurrent units and combined them with a motion model to estimate the side-slip angle. Subsequently, we evaluated the model using the 3DCoAutoSim simulation platform, where we designed a suitable simulation environment with snowfall, friction, and car tracks in snow. The results revealed that our approach outperforms the baseline model for prediction horizons ⩾ 2 seconds. This extended prediction horizon has practical implications, by providing drivers and autonomous systems with more time to make informed decisions, thereby enhancing road safety.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.